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ABSTRACT E.PathDash facilitates re-analysis of gene expression data from pathogens 
clinically relevant to chronic respiratory diseases, including a total of 48 studies, 548 
samples, and 404 unique treatment comparisons. The application enables users to assess 
broad biological stress responses at the KEGG pathway or gene ontology level and also 
provides data for individual genes. E.PathDash reduces the time required to gain access 
to data from multiple hours per data set to seconds. Users can download high-quality 
images such as volcano plots and boxplots, differential gene expression results, and raw 
count data, making it fully interoperable with other tools. Importantly, users can rapidly 
toggle between experimental comparisons and different studies of the same phenom­
enon, enabling them to judge the extent to which observed responses are reproducible. 
As a proof of principle, we invited two cystic fibrosis scientists to use the application 
to explore scientific questions relevant to their specific research areas. Reassuringly, 
pathway activation analysis recapitulated results reported in original publications, but 
it also yielded new insights into pathogen responses to changes in their environments, 
validating the utility of the application. All software and data are freely accessible, and 
the application is available at scangeo.dartmouth.edu/EPathDash.

IMPORTANCE Chronic respiratory illnesses impose a high disease burden on our 
communities and people with respiratory diseases are susceptible to robust bacte­
rial infections from pathogens, including Pseudomonas aeruginosa and Staphylococcus 
aureus, that contribute to morbidity and mortality. Public gene expression datasets 
generated from these and other pathogens are abundantly available and an important 
resource for synthesizing existing pathogenic research, leading to interventions that 
improve patient outcomes. However, it can take many hours or weeks to render publicly 
available datasets usable; significant time and skills are needed to clean, standardize, and 
apply reproducible and robust bioinformatic pipelines to the data. Through collabora­
tion with two microbiologists, we have shown that E.PathDash addresses this problem, 
enabling them to elucidate pathogen responses to a variety of over 400 experimental 
conditions and generate mechanistic hypotheses for cell-level behavior in response to 
disease-relevant exposures, all in a fraction of the time.

KEYWORDS bioinformatics, gene expression, respiratory pathogens, pathway analysis

I n a review of the 2017 Global Burden of Disease report conducted by the Institute 
for Health Metrics and Evaluation, Soriano et al. found that the prevalence of chronic 

respiratory diseases worldwide increased by 39.8% (1), and recent research has identified 
an association between multiple chronic respiratory diseases and changes in the airway 
microbiome (2). Therefore, in developing treatments for chronic respiratory diseases, it 
is important to understand how pathogens respond to experimental conditions such 
as growth medium, drug treatment, or genetic mutation (3–5). Although there have 
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been thousands of studies in this area of research, only a small percentage of the 
archived data is readily accessible for re-analysis. The goal of the application described 
here is to facilitate both gene and pathway-level re-analysis of publicly available gene 
expression data from pathogens clinically relevant to a variety of respiratory diseases, 
including Pseudomonas aeruginosa, Bacteroides thetaiotaomicron, Staphylococcus aureus, 
and Streptococcus sanguinis (6–15).

The rise in transcriptomic data production began with the invention of the microarray 
in 1995 (16) and has continued through the past three decades, with data accumulating 
ever more rapidly after the development of sequencing methodologies that utilize the 
computational and hardware advances of modern computing (17). Public repositories, 
such as the European Bioinformatics Institute’s ArrayExpress (18) and the National Center 
for Biotechnology Information’s Gene Expression Omnibus (GEO) (19), have come online 
in concert with the rise of high-throughput sequencing data. As the infrastructure for 
data collection and hosting has become more robust, the data science and research 
communities have adopted the mission of developing findable, accessible, interopera­
ble, reusable (FAIR) data practices (20). While public repositories further the goals of 
findability and accessibility, the microbiology research community would nonetheless 
benefit from easy to use data reuse platforms that do not require statistical expertise or 
computationally expensive and labor-intensive data cleaning and formatting.

The goal of the application described in this paper is to facilitate the reuse of publicly 
available data. Our application reduces the time required to gain access to data in 
48 studies, 548 samples, and 404 unique treatment comparisons from multiple hours 
per data set to seconds. The application primarily serves the research community of 
microbiologists interested in pathogens associated with chronic respiratory diseases. In 
this paper, we chose cystic fibrosis (CF) as a case study to demonstrate the value of the 
application to researchers. People with CF (pwCF) are subject to chronic lung infections, 
which are responsible for 90% of the disease’s morbidity and mortality (21–24). Two 
pathogens that commonly dominate the lungs of pwCF, Pseudomonas aeruginosa (P. 
aeruginosa) and Staphylococcus aureus (S. aureus), are included in over 80% of the 
data sets in the application presented here. The 2022 CF Patient Registry reported S. 
aureus infection in 60%–80% of CF patients in age cohorts younger than 18 years old 
(25). Research has shown a strong association between S. aureus infection and poor 
clinical outcomes like decreased lung function and increased inflammation (26, 27). P. 
aeruginosa, dominant in late-stage lung infections, has been shown to be multi-drug 
resistant and is adept at forming biofilms that inhibit the immune response to bacterial 
infection (28).

Both S. aureus and P. aeruginosa are also clinically relevant beyond CF. As members 
of the ESKAPE pathogen group (Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter sp.), they 
are classified as highly virulent organisms that are adept at developing antibiotic 
resistance (29, 30). There is a demonstrated association between S. aureus and persistent 
asthma (14) and methicillin-resistant S. aureus (MRSA) is a common cause of hospital-
acquired pneumonia infections (31). In chronic obstructive pulmonary disease (COPD), P. 
aeruginosa infection has been shown to increase the risk of exacerbation and hospitaliza­
tion events (32) (Table S3).

E.PathDash (ESKAPE Act PLUS Pathway Dashboard) streamlines the re-analysis of 
publicly available RNA-Seq data relevant to respiratory diseases by enabling users to 
run pathway activation analysis for all possible treatment comparisons within each data 
set in its compendium. This analytical approach uses transcriptomic data to identify 
differentially activated or repressed biological pathways across treatment comparisons. 
In doing this, the program contributes to the body of tools that promote FAIR data 
principles and allows users to derive biological insights and formulate new hypotheses 
for future experiments. It achieves this without requiring investigators to be familiar with 
statistical methods for pathway analysis, or forcing them to normalize raw gene counts, 
establish consistent gene identifier encodings, or perform differential gene expression 
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analysis. E.PathDash dramatically reduces the time required to access and analyze the 
data included in its compendium from many hours per data set to seconds.

E.PathDash can be accessed freely at scangeo.dartmouth.edu/EPathDash.

Addressing the limitations of existing applications

A number of bioinformatic tools that perform pathway analysis have been developed 
in response to the increased use of omics data in biological research (33). Most of 
the applications require user-supplied data and, therefore, do not readily promote the 
reuse of publicly available datasets (34–37). An exception to note is iDEP (integrated 
Differential Expression and Pathway analysis), but the data sets included in iDEP do not 
include data from bacterial species of interest to respiratory disease researchers (37).

We have previously published several applications that facilitate computational 
tasks for microbiologists and CF researchers (36, 38–40). Two of these applications, 
ESKAPE Act PLUS (Activation Analysis for ESKAPE Pathogens and other Prokaryotes 
Labs Usually Study) (36) and CF-Seq (38), inspired the development of the application 
described here. ESKAPE Act PLUS performs pathway activation analysis on user-uploaded 
differential gene expression data. It uses the same binomial test method employed in 
E.PathDash, which is described fully in Materials and Methods. CF-Seq is a platform 
for exploring gene-level analyses of public experimental data from clinically relevant 
CF pathogens, utilizing RNA-Seq data sets from the GEO. By combining the statistical 
backend of ESKAPE Act PLUS and a subset of relevant processed RNA-Seq data from 
CF-Seq, E.PathDash gives users a platform to explore pathway activation across a curated 
compendium of publicly available RNA-Seq data sets without having to perform any 
data cleaning, formatting, or analysis tasks themselves. This saves users a considerable 
amount of time even if they have the skills to perform the steps required to access the 
data.

RESULTS

E.PathDash is a R Shiny web application that facilitates the re-analysis of publicly 
available pathogen gene expression data relevant to respiratory diseases. Its compen­
dium includes a total of 48 studies, 548 samples, and 404 unique treatment comparisons. 
Specifically, the application automates pathway activation analysis for each RNA-Seq 
data set in its compendium, all of which were originally sourced from the GEO. Figure 
1 provides an overview of the application flow, capturing the decisions users make as 
they navigate the application (orange branch nodes) and the analysis products that are 
generated (purple leaf nodes).

Workflow

After launching the application in an internet browser and reading an application 
overview (Fig. 2, screen 1), the user begins interacting with the compendium data by 
filtering the cataloged data sets on bacterial species and strain(s) of interest (Fig. 2, 
screen 2). From here, the user can navigate between four different dashboard pages (Fig. 
2, screens 3–5). Individual screenshots of the dashboard pages are included in the 
supplemental material (Fig. S1 to S6).

Study Explorer

Selecting a single data set (labeled by GEO accession number) from a list filtered by 
bacterial species and strain (Fig. 2, label C) activates the Study Explorer page (Fig. 2, 
screen 3). This page contains metadata about the data set (a link to the GEO entry, study 
title, study description), downloadable raw counts and study design matrices, and four 
pathway activation analysis components controlled by a treatment comparison drop 
down (Fig. 2, screen 3). The treatment comparison considers all samples exposed to the 
two specified experimental conditions, and the analyses identify systematic transcrip­
tional changes between these sample groups. Significantly activated or repressed Kyoto 
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Encyclopedia of Genes and Genomes (KEGG) pathways (41, 42) and gene ontology (GO) 
terms (43, 44) are shown in two boxplots, which use the distribution of log2 fold change 
(logFC) values for genes within the pathway to capture how the pathway is activated or 
repressed (Fig. 2, label E). Two tables, one for KEGG pathways and one for GO terms, 
contain additional statistical information regarding the pathway activation analysis: 
binomial test statistic (which represents the proportion of activated pathway genes, i.e., 
those with a positive logFC value), median gene logFC, P-value, and FDR corrected P-
value (Fig. 2, label F). Changing the treatment comparison (Fig. 2, label D) updates the 
data in the plots and tables to show pathway activation analysis for the specified 
comparison. For example in treatment 1 vs treatment 2, treatment 2 is the reference and 
the results can be interpreted as follows: pathways are activated or repressed in treat­
ment 1 compared to treatment 2.

KEGG Pathway Explorer and GO Term Explorer

Users can search the data sets based on a KEGG pathway of interest in the KEGG Pathway 
Explorer page, which provides an interface to compare activation between data sets. The 
bacterial species and strain filters control the pathway options available. The pathways 
have to be defined by KEGG for the given organism and be significantly activated or 
repressed in at least one treatment comparison. Selecting a pathway returns a table that 
lists all data sets for which that pathway was significantly activated or repressed (Fig. 2, 
label G). In addition to the GEO accession number, the table contains the specific 
treatment comparison that showed activation or repression and the median logFC value 
for the genes within the pathway. Selecting a row in the results table renders a volcano 

FIG 1 Conceptual flowchart for E.PathDash. The root (green) represents the bacterial species/strain filter the user must set to start exploring the data. Orange 

nodes represent decision points the user makes while navigating the application, and the purple leaves are results the different decision paths generate.
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plot of the genes within the pathway of interest. The volcano plot compares a gene’s 
logFC value on the x-axis to the negative log10 transformed P-value on the y-axis. The P-
value transformation plots statistically significant genes at higher y-axis values. This 
feature can be used in tandem with the Study Explorer page to investigate how genes 
within an activated or repressed pathway were differentially expressed in the study and 
treatment comparison of interest. This functionality is duplicated in the GO Term Explorer 
page, where users can search the data by GO term.

Study Comparison

The Study Comparison page allows users to compare pathway activation analyses for 
two selected data sets (Fig. 2, screen 5). The page contains a table of KEGG pathways and 

FIG 2 Screen 1: landing page. Screen 2: filtering side panel where users select species (A) and strain (B). Studies that meet filter requirements are shown in panel 

C. After filtering users can move to screen 3, 4, or 5 by selecting the corresponding button. Screen 3: the Study Explorer page shows information about a selected 

study. Selecting a treatment comparison (D) populates boxplots of gene expression in statistically significant activated or repressed KEGG pathways and GO 

terms (E) and a table of statistical information for all pathways/terms analyzed (F). Screen 4: the KEGG Pathway Explorer and GO Term Explorer pages search the 

data by a pathway or term of interest and return a table of studies in which the pathway was significantly expressed (G). Selecting a study shows a volcano plot 

for the genes within the pathway (H). Screen 5: in the Study Comparison page, users select two studies (I) to see commonly activated/repressed KEGG pathways 

and GO terms (J). Selecting a pathway renders bar charts of median gene logFC value for each treatment comparison (K). There are enlarged versions of the 

dashboard pages in the supplemental material (Fig. S1-S6).
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GO terms that were significantly activated or repressed in both study data sets (Fig. 2, 
label J). Selecting an entry in the table shows how the KEGG pathway or GO term was 
expressed across the different treatment comparisons within each data set (Fig. 2, label 
K), utilizing the bar plot described in “Application design” in Materials and Methods.

Downloadable content

Downloadable content is an important feature of the application because it provides full 
interoperability with other tools. Users can download all generated graphs, tables, raw 
gene count data, and differential gene expression results for each treatment comparison 
within each data set. Furthermore, users can download the differential gene expression 
data (by study and sample comparison) for just the genes within a KEGG pathway 
or GO term of interest. A complete list of downloadable content is included in the 
supplementary material (Table S1). Users can leverage this clean and well-formatted data 
to jump start additional analyses they wish to perform in other bioinformatic pipe­
lines, eliminating the significant pre-processing time necessary to make much publicly 
available transcriptomic data usable.

E.PathDash is able to recapitulate findings from studies associated with the data 
sets in its compendium. The study by Farrant et al. (GEO data set GSE124385) repor­
ted on activation of the sulfur metabolism pathway and type III secretion system by 
hypochlorous and hypothiocyanous acids in P. aeurginosa (45), which was observed in 
the analyses from E.PathDash (Table S4; Fig. S7). Additionally, Bouzo et al. (GEO data 
set GSE142448) reported that manuka honey treatment depressed quorum sensing and 
fatty acid metabolism in P. aeruginosa (46), again findings that were seen in E.PathDash 
pathway analyses (Table S4). To demonstrate the capabilities of the application beyond 
confirming findings from the literature, we gave it to two CF scientists, who used 
the application to investigate questions relevant to their research. They contributed 
user stories detailing how they used the application, their findings, and their overall 
experience with E.PathDash.

Case study #1: propanoate metabolism in P. aeruginosa during microbial 
interactions (Dr. Georgia Doing, The Jackson Laboratory for Genomic 
Medicine)

To expand upon conclusions drawn from a previously published data set of P. aeruginosa 
gene expression from in vitro co-culture with Candida albicans (GEO: GSE148597) (47), 
I used E.PathDash to explore a comparison between P. aeruginosa in co-culture and 
mono-culture (in the application, the treatment comparison selected was “co-culture 
WT - PA Monoculture”). This comparison is complementary to those presented in the 
original publication and reveals exciting new hypotheses. Re-analyzing the data using 
the E.PathDash Study Explorer shows that many pathways are activated in P. aeruginosa 
when grown on C. albicans including many pathways involved in metabolizing amino 
acids, sugars, and carboxylic acids. The availability of amino acids and sugars may differ 
across mono-culture and co-culture conditions, and the activation of these pathways is 
likely due to competition for the resources of the underlying medium, whereas metabolic 
processes involving carboxylic acids are more likely reflective of microbial interactions 
via the exchange of metabolic intermediates and exoproducts. Furthermore, given the 
broad activation of many pathways, these results suggested there may be simultane­
ous or interacting pathways not previously implicated in P. aeruginosa’s response to C. 
albicans. Due to the known role of ethanol as an exchanged metabolite, I checked for 
pathways that potentially interact with ethanol metabolism via shared genes but also 
suggest the exchange of novel metabolites. In fact, the E.PathDash re-analysis revealed 
the propanoate metabolism KEGG pathway (pau00640) had statistically significant 
activation (binomial test estimate 0.8, median gene fold change 0.99, and FDR < 0.001). 
Specifically, P. aeruginosa genes for the metabolism of propanoate have higher mRNA 
levels when P. aeruginosa is in co-culture with C. albicans compared to when P. aeruginosa 
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is in mono-culture (Fig. 3A). While propanoate metabolism may have been previously 
overlooked due to key enzymes being attributed solely to ethanol catabolism, this 
exploratory re-analysis suggests P. aeruginosa may also be metabolizing propanoate or 
inducing the 2-methylcitrate cycle (48).

Changing the treatment comparison in the Study Explorer showed that the KEGG 
propanoate metabolism pathway is also activated, though to a lesser extent, when P. 
aeruginosa is grown in co-culture with WT C. albicans compared to P. aeruginosa grown 
with the adh1∆/∆ C. albicans mutant, which is deficient in ethanol production (Fig. 3B) 
(binomial test estimate 0.88, median log fold change 0.53, and FDR < 0.0001). The 
trend toward increased expression of propanoate metabolism genes when P. aeruginosa 
is grown with WT C. albicans compared to adh1∆/∆ C. albicans, as well as the lower 
magnitude fold change when P. aeruginosa is grown with adh1∆/∆ C. albicans compared 
to P. aeruginosa grown in mono-culture (binomial test estimate 0.63, median log fold 
change 0.53, and FDR 0.24), suggests that C. albicans ethanol production may be 
contributing to the response of increased propanoate metabolism in P. aeruginosa. This is 
consistent with a report in E. coli that showed ethanol-induced propanoate metabolism 
activated the expression of prpD, a gene also present in P. aeruginosa (49).

Downloading the log fold change values of the genes in the propanoate metabo­
lism KEGG pathway using the E.PathDash KEGG Pathway Explorer interface (Table S2) 
provided the nuanced information on the top five genes in the propanoate KEGG 

FIG 3 Use of E.PathDash to analyze the expression of propanoate metabolism genes in P. aeruginosa. (A) The Study Explorer of GSE148597 shows that the KEGG 

pathways significantly activated in P. aeruginosa co-cultured with C. albicans compared to mono-culture include propanoate metabolism. Box and whisker plots 

show log fold change distributions of genes in each pathway. (B) The Study Comparison tool shows the other comparisons in the study and suggests C. albicans 

ADH1-dependent ethanol production plays a role in stimulating the expression of the propanoate metabolism KEGG pathway. (C) Volcano plot from the Study 

Explorer shows individual genes in the propanoate metabolism KEGG pathway. Data are plotted as fold change values and negative log transformed P-values.
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pathway. The highest log fold change values in co-culture were acsL, accC, mmsA, acsA, 
and acsB (Fig. 3C). Notably, acsL, acsA, and acsB are acetyl-CoA synthetases that can 
convert propanoate to propionyl-adenylate and then propanoyl-CoA, but acsA and acsB 
can also convert acetate to acetyl-CoA during ethanol oxidation (50). This suggests that 
ethanol may induce ErdR responsive genes (51) which, in addition to regulation through 
prpD, may also facilitate the metabolism of propanoate.

The E.PathDash KEGG Pathway Explorer shows that propanoate metabolism is also 
activated in a study, wherein P. aeruginosa was treated with farnesol (GEO: GSE138731, 
median gene log fold change 0.26, Fig. 4A), a C. albicans-produced quorum-sending 
molecule known to alter P. aeruginosa metabolism (52). Furthermore, propanoate 
metabolism is also activated in studies in which P. aeruginosa is transitioned from 
anaerobic conditions to microaerobic conditions (GEO: GSE71880, median gene log 
fold change 0.63, Fig. 4B) and treated with artificial honey and methylglyoxal (GEO: 
GSE142448, median gene log fold change −1.22, Fig. 4C) (46). The E.PathDash Study 
Comparison feature made the specific directionality of each comparison clear: propa­
noate was activated upon the addition of farnesol and micro-oxia and repressed upon 
the addition of methylglyoxal (Fig. 4, bars highlighted in red). These conditions may 
mimic those of metabolic imbalance such that intermediates of glycolysis or the TCA 
cycle accumulate. Notably, methylglyoxal can be detoxified into intermediates that 
converge with those of propanoate metabolism (53), and the TCA intermediate succinate 
can stimulate propanoate metabolic genes (54). While these connections are likely 
indirect, they provide preliminary evidence suggesting co-culture with C. albicans alters 
P. aeruginosa central metabolism in a manner that leads to altered pools of metabolic 
intermediates and perhaps a convergence on propanoate metabolism.

Analysis of previously published data sets with E.PathDash suggests a hypothesis, 
wherein P. aeruginosa propanoate metabolism may be stimulated by C. albicans-pro­
duced ethanol through (i) direct regulation of propanoate catabolic gene prpD by 
ethanol-sensing ErdR and (ii) metabolic convergence of ethanol oxidation and prop­
anoate catabolism by dual-function acetyl-CoA synthetases acsA and acsB (Fig. 5). 
This model could be readily tested with erdR mutations and assays of acsA and acsB 
expression as well as growth on ethanol and propanoate. Additionally, the broad 
activation of the propanoate KEGG pathway in other studies that looked at in vitro 
conditions relevant to co-culture suggest propanoate and ethanol metabolism may 
be further stimulated by (iii) other factors present in co-culture such as farnesol, 
oxygen limitation, and metabolic intermediate methylglyoxal (Fig. 5). The pathway-level 
interactions could be untangled with epistasis experiments on relevant environment-
sensing genes such as oxygen-sensing anr and metabolic genes like methylglyoxal 
reductases. This tool facilitated hypothesis generation resulting in a testable model of 
the key role propanoate metabolism may play in medically relevant microbial interac­
tions of P. aeruginosa.

Case study #2: differential effects of DNA-gyrase inhibitor classes on biofilm 
formation in P. aeruginosa (Sharanya Sarkar, Ph.D. candidate, Geisel School of 
Medicine at Dartmouth)

P. aeruginosa is the most common pathogen found in adult people with cystic fibrosis 
(pwCF) (25). To maintain control of infections, pwCF are prescribed antibiotics as a part of 
their treatment regimen (55) and DNA gyrase inhibitors, particularly the fluoroquino­
lones, constitute a standard treatment for P. aeruginosa infections (56). One of the most 
challenging problems with P. aeruginosa infections is the formation of robust, antibiotic-
resistant biofilms within the respiratory tract that are exceedingly challenging to 
eliminate once established (57, 58). Our lab investigates antimicrobial treatments that 
interfere with biofilm formation in P. aeruginosa (59–61). Since gyrase inhibitors also 
inhibit biofilm formation (62, 63), we used E.PathDash to analyze how DNA gyrase 
inhibitors affected this process in experimental settings. Additionally, we wanted to 
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FIG 4 The KEGG Pathway explorer showed that propanoate metabolism genes are also increased in 

expression in in vitro studies of (A) P. aeruginosa treated with farnesol, (B) transitioned between anaerobic 

and micro-oxic conditions, and (C) treated with artificial honey and methylglyoxal. Highlighted bars show 

relevant comparisons of each study.
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determine if distinct classes of DNA-gyrase inhibitors impacted biofilm formation 
differentially.

Utilizing the species filter in E.PathDash to search across study data for P. aeruginosa 
data sets, we investigated data set GSE166602, which looked at molecular signatures in 
P. aeruginosa with different gyrase inhibitors (64). Using different treatment comparisons 
in the Study Explorer page, we found that untreated P. aeruginosa had significantly 
upregulated biofilm formation compared to P. aeruginosa treated with coumermycin, 
with a median gene logFC value of 0.33 (Fig. 6A, FDR 0.015). In other words, the median 
expression of biofilm genes in the untreated condition was 1.26 times greater than 
that observed in the coumermycin condition. Subsequently, we aimed to compare the 
inhibitory effects of ciprofloxacin, an antibiotic belonging to the fluoroquinolone group 
(the second class of gyrase inhibitors), with a control condition (untreated). The results 
showed that ciprofloxacin repressed biofilm formation in P. aeruginosa compared to 
untreated P. aeruginosa, with a median gene logFC of −0.22 (Fig. 6B, FDR 0.042). In this 
comparison, gene expression within the biofilm formation pathway in the untreated 
condition was 1.16 times greater than that with ciprofloxacin treatment.

Considering these two comparisons, we hypothesized that P. aeruginosa treated with 
ciprofloxacin will have greater biofilm formation compared to those treated with 
coumermycin. As anticipated, when comparing ciprofloxacin­treated P. aeruginosa to 
coumermycin-treated P. aeruginosa, biofilm formation was upregulated in the former 
group (Fig. 6C, FDR 0.001). This indicates that ciprofloxacin does not substantially reduce 
biofilm formation, unlike coumermycin.

Next, we explored responses of genes in the biofilm formation KEGG pathway using 
the KEGG Pathway Explorer page. Our specific focus was on examining significantly 
upregulated biofilm­related genes in control P. aeruginosa exhibiting a minimum log2 
fold change of 0.5, as compared to coumermycin. One particular gene (UniProt: 

FIG 5 Hypothesized model synthesizing the results found using E.PathDash: ethanol may stimulate propanoate metabolism directly through ErdR regulation of 

prpD and indirectly through activity of acsA and acsB acting upon both acetate and propanoate. Furthermore, metabolic products of ethanol and propanoate 

catabolism may converge on propanoyl-CoA and feed into the citrate cycle.
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A0A0H2ZEE6, gene name: rhll) met these criteria (Fig. 7A) and was chosen for further 
scrutiny. A brief search using the UniProt ID revealed that this gene encodes an Acyl-
homoserine-lactone synthase. Previous research has demonstrated that biofilm forma­
tion in P. aeruginosa can be influenced by targeting acyl-homoserine-lactones (AHLs) 
(65). Taken together, the analysis suggests that one of the mechanisms through which 
coumermycin significantly downregulates biofilm formation in

P. aeruginosa is by targeting AHL synthase. Given that coumermycin demonstrated 
superior efficacy in preventing biofilm formation compared to ciprofloxacin, we postu­
late that the central biofilm gene, AHL synthase, might be more highly expressed in the 
ciprofloxacin group than in the coumermycin group. We referred to the downloaded 
gene expression data for the ciprofloxacin­coumermycin comparison from the KEGG 
Pathway Explorer page and easily located the log2 fold change value for this gene. It was 
evident that this gene was significantly upregulated in the ciprofloxacin group (Fig. 7B), 
implying that ciprofloxacin may not be as proficient as coumermycin in targeting AHL 
synthase.

In summary, the application provided a highly visual and efficient means to re-
evaluate a public data set. It indicated that coumermycin could potentially be a more 
effective option for treating biofilm­forming microorganisms such as P. aeruginosa, in 
comparison to ciprofloxacin, and this can be tested experimentally. Our re-analysis of the 
data extends the findings of the original publication by focusing on quorum-sensing 
mediators.

FIG 6 (A) Coumermycin downregulates biofilm formation in P. aeruginosa compared to control, with median expression of biofilm genes 0.79 times that of 

control (median logFC −0.33). (B) Ciprofloxacin represses biofilm formation in P. aeruginosa as compared to control with median expression of biofilm genes 0.85 

times that of control (median logFC −0.22). (C) Coumermycin is more efficient than ciprofloxacin in reducing biofilm formation in P. aeruginosa.
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This case study underscores an important lesson in understanding how antibiotics, 
even when binding to the same target in the pathogen, but belonging to distinct 
structural classes, can have varying effects on pathogenic processes. This case study also 
informs our group with respect to ongoing research projects in the lab. Our team has 
previously demonstrated that when combined with antibiotics, the microRNA let-7b-5p 
exhibits additive effects in suppressing biofilm formation in P. aeruginosa (59). The 
findings from this analysis, facilitated by E.PathDash, guide our group in conducting 
preliminary studies on P. aeruginosa to assess the efficacy of various antibiotics. Identify­
ing the most potent biofilm­inhibiting antibiotic can maximize the additive effect of a 
therapeutic let-7b-antibiotic combo.

DISCUSSION

E.PathDash facilitates re-analysis of gene expression data from pathogens clinically 
relevant to respiratory diseases, including a total of 48 studies, 548 samples, and 404 
unique treatment comparisons. E.PathDash has several key features that make it a 
valuable resource for hypothesis generation that also enhances data reusability and 

FIG 7 AHL synthase, a key biofilm gene in P. aeruginosa, is significantly upregulated in (A) control, as compared to coumermycin-treated P. aeruginosa, and in 

(B) ciprofloxacin­treated P. aeruginosa as compared to coumermycin-treated P. aeruginosa.
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generates reproducible analyses. First, E.PathDash provides multiple entry points into the 
data sets within its compendium; the user can drill down into a single data set related to 
a bacterial species of interest, search for activated pathways across data sets, or compare 
pathway expression between data sets and treatments. The case studies highlighted 
in this paper demonstrate how this allows researchers to follow an investigative path 
through multiple questions, all within a single interface, and identify research data sets 
that show activation of a pathway of interest.

Second, E.PathDash makes the cleaned raw data and analysis results available for 
download. This promotes transcriptomic analyses beyond the capabilities built into the 
application and cuts down on the time investigators need to spend preparing publicly 
available data for reuse (from many hours to seconds).

Third, the application links gene-level and pathway-level analyses, which allows 
researchers to quickly extend the conclusions of pathway activation to expression data 
at the individual gene level. This can be done by rendering a volcano plot of genes in a 
pathway using the “KEGG Pathway Explorer” or “GO Term Explorer” page, as described 
in Results. In both case studies, E.PathDash was used to identify how genes within a 
significantly activated pathway were expressed, which led to mechanistic hypotheses 
regarding pathway activation. Therefore, insights facilitated by E.PathDash can help 
generate ideas for future experiments.

E.PathDash was developed as a tool that expands upon ESKAPE Act PLUS and CF-Seq, 
other applications developed by our group that facilitate re-analysis of omics data. 
This relationship promotes the use of all three applications together, expanding on 
the hypotheses one could generate from any individual application. ESKAPE Act PLUS 
performs pathway analysis on user-supplied differential gene expression data sets, using 
the same binomial test and pathways in E.PathDash. The use of a consistent methodol­
ogy in both applications allows users to connect transcriptional patterns in their own 
data sets to those identified by E.PathDash in its compendium of publications. Addition­
ally, CF-Seq and E.PathDash use the same differential gene expression analysis pipeline 
and contain some of the same publicly available data sets. Therefore, users can explore 
differential gene expression patterns for those data sets also included in CF-Seq beyond 
what is communicated by the volcano plots in E.PathDash.

Given the application’s relationship to ESKAPE Act PLUS, the data sets were restricted 
to pathogens included in the analytical pipeline for ESKAPE Act PLUS. This decision 
restricted the number of RNA-Seq data sets included in the application. An area of future 
work is to increase the number of data sets and compatible pathogens, which could be 
done by expanding the number of species and strains for which ESKAPE Act PLUS has 
pathway data.

In its implementation of pathway activation analysis, ESKAPE Act PLUS assumes that 
under the null hypothesis the split of up and down regulated genes is 50% (36). This 
assumption ignores inherent differences between expression levels across RNA-Seq data 
sets and could be made more sophisticated by using the overall rate of induction within 
the data set as the null hypothesis ratio. Subsequently, the magnitude of deviation 
between the overall induction rate and the induction rate among genes within a 
pathway could determine significant pathway activation or repression.

It is important to acknowledge that E.PathDash and other methods to interrogate 
archived data are hypothesis generating and should not be used to draw absolute 
conclusions about responses to experimental conditions. Additionally, the distillation 
of biological processes into large networks of genes represented by KEGG pathways 
and GO terms obscures interactions between such processes and may preclude the 
identification of significantly activated smaller, organism­specific regulatory networks 
(66, 67). Despite these caveats our group has published several studies where we mined 
publicly available data and performed pathway analysis, through which new hypotheses 
were identified and confirmed by laboratory experiments (3, 68–71).

Users of E.PathDash should also note that data sets in the compendium were not 
generated from experiments that shared wet bench or computational protocols in their 
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data collection pipeline. Thus, any direct comparisons between data sets should consider 
the underlying study design differences that could have contributed to the analysis 
results.

MATERIALS AND METHODS

Data collection and cleaning

Figure 8 shows an overview of the data collection, cleaning, and analysis pipelines. 
Data collection for E.PathDash, represented by the orange arrows in Fig. 8, happened 
in two different stages. First, data sets were extracted from the compendium originally 
compiled for the CF-Seq application, which contained relevant data sets published on 
GEO through July 2021 . Second, the GEO was queried for data sets published between 
August 2021 and December 2023.

The first wave of data collection started with the compendium of RNA-Seq data sets 
from the GEO that were originally compiled for the development of CF-Seq. The CF-Seq 
data collection process restricted data sets to clinically relevant CF pathogens identified 
by a literature review (38). Additional requirements included RNA-Seq files need to be 
tables of raw gene counts in formats compatible with R’s file functions and the differen­
tial expression analysis package edgeR, and study metadata has to define sample groups 

FIG 8 Data collection, cleaning, and analysis pipeline for the creation of the E.PathDash application database. All RNA-Seq data sets originated from GEO. Data 

uploaded after July 2021 (not included in the CF-Seq application database) were run through the CF-Seq differential expression analysis pipeline. Subsequently, 

all data sets were run through the ESKAPE pathway activation analysis pipeline, and both differential analysis and pathway activation results were pulled into the 

E.PathDash application database.
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for the purpose of differential gene expression analysis. These requirements allowed 
automated processing of the data sets.

Raw count tables and differential gene expression analysis results, obtained using 
the CF-Seq analysis pipeline, were extracted from the CF-Seq compendium for use in 
E.PathDash. The extraction process was conducted with R scripts run on R version 4.2.1 
(72). The scripts filtered the data sets to those pathogens compatible with the ESKAPE 
Act PLUS application (36), which was leveraged to conduct pathway activation analysis. 
Those pathogens were Pseudomonas aeruginosa (strains PA14 and PAO1), Bacteroides 
thetaiotaomicron (strain VPI-5482), Staphylococcus aureus (strains Newman and USA300), 
and Streptococcus sanguinis (strain SK36). These pathogens have been shown to play 
an important role in a variety of respiratory diseases (6–15) and can be affected in the 
airway by pertinent environmental exposures like air pollution (73).

The second wave of data collection pulled data sets published on the GEO from 
August 2021 through December 2023 that met the same organism, file format, content, 
and sample group requirements outlined above. The scripts used to do this can be 
found in the Git repository associated with this publication (https://github.com/DartCF/
EPathDash). Specifically, the scripts used the Entrez programming utilities (74) from the 
NCBI to query the GEO for data sets where the organism was one of the four pathogens 
of interest, the type was “expression profiling by high throughput sequencing” (identifies 
RNA-Seq data sets), and the release date was between 1 August 2021 and 31 December 
2023. From the collection returned by the Entrez queries, we manually identified data 
sets that had raw count data in the formats compatible with R’s file functions and 
sample group definitions. Differential gene expression analysis for the new data sets 
was conducted using the CF-Seq analysis scripts. The final compendium, including data 
sets from both collection waves, consisted of 48 studies, 548 samples, and 404 unique 
treatment comparisons across the four different bacterial species.

For the purpose of differential gene expression and pathway analyses, each data set 
in our final compendium needed a corresponding design matrix that mapped samples to 
experimental conditions defined in the study. Each design matrix was created manually 
using sample information from the GEO, ensuring a consistent format. This effort and 
the development of data set retrieval scripts required significant time upfront that we 
believe returns time to the researcher using E.PathDash.

ESKAPE Act PLUS, used to conduct pathway activation analysis, uses the KEGGREST 
R package (75) from Bioconductor to map genes to KEGG pathways for the purpose of 
the analysis (36). The KEGGREST mappings use UniProtKB (UniProt Knowledgebase) gene 
encodings, requiring all gene identifiers to be translated to UniProtKB . Metadata for each 
study was reviewed to identify the gene encoding schema, and the UniProt Consortium’s 
web-based gene ID mapping tool was used to translate gene IDs to UniProtKB (76). Gene 
IDs in their native encoding were extracted from the RNA-Seq data sets and written 
to CSV files, which were uploaded to the UniProt ID mapping tool. Batches for each 
encoding schema were run separately because the translation tool does not dynami­
cally detect the gene encoding schema and requires the input schema to be manually 
specified. Results consisted of the original gene identifier and the corresponding UniProt 
ID. This dictionary was used to translate gene IDs for pathway activation analysis. The 
scripts used to conduct the data pre-processing can be found in the Git repository cited 
previously.

Within the 48 studies included in the final compendium, 31 of the studies had 
multiple rows with the same UniProt identifier but different logFC values for differential 
expression. This inconsistency was a result of there being rows in the raw count data for 
an ordered locus name and gene name corresponding to the same protein. To resolve 
this, we chose to keep only the information for the identifier associated with the smaller 
P-value for differential gene expression, optimizing the sensitivity of the downstream 
pathway activation analysis. In general P-values for these unique rows were similar.

After data collection and cleaning, the data structure used for pathway activation 
analysis consisted of differential gene expression results for each unique treatment 
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comparison within each data set. Each row of the dataframe consisted of UniProt gene 
identifier, logFC value, and adjusted P-value (corrected for multiple hypotheses using the 
FDR method).

Data analysis

Differential gene expression analysis for all data sets was conducted using the R package 
edgeR (77, 78). After removing low-expression genes and normalizing library sizes, count 
matrices were fit to a log-linear model using glmQLFit, and gene-wise tests for differen­
tial expression were conducted using glmQLFTest. The model and the corresponding 
statistical test require there be multiple replicates of each experimental condition. 
Therefore, downstream comparisons made by E.PathDash represent transcriptional 
differences for groups of samples in the specified treatment conditions. To see the 
full implementation of the edgeR pipeline that was used for the RNA-Seq data sets in 
this compendium, refer to the data setup script in the Git repository (https://github.com/
DartCF/cf-seq).

Pathway activation analysis was conducted using the same pipeline implemented 
in ESKAPE Act PLUS (36). We use a binomial test to identify significantly activated 
or repressed pathways between treatment groups. The binomial test uses only the 
distribution of positive and negative logFC values for genes in a pathway, thus prevent­
ing any single gene from driving the statistical analysis (36). The test’s null hypothesis 
assumes that an equal proportion of genes will be activated (positive logFC value) 
and repressed (negative logFC value) under random conditions. E.PathDash uses the 
binom.test function in R’s stats package (72) to determine if the observed proportion 
of genes with positive logFC values in a given pathway differs significantly from 50%. If 
this difference has a FDR-corrected P-value < 0.05, the pathway is labeled as significantly 
activated or repressed.

An advantage of this method of pathway analysis is that it accounts for all  genes 
within a pathway (and present in the given RNA-Seq data set),  not just those that 
meet a threshold of differential  expression between treatment groups. Therefore, 
information from genes on the edges of a threshold for statistical significance  or 
logFC value is not lost.  Another common method to identify activated pathways, 
over-representation analysis (ORA) for pathway enrichment, restricts the analyzed 
genes to those with statistically significant  differential  expression between experi­
mental groups (79).

Pathway activation analysis was conducted for KEGG pathways and GO terms. KEGG 
and GO are databases annotated by domain experts that map genes to functional 
groups (41–44). Pathway activation analysis results for each treatment comparison within 
each data set was stored in the final database for E.PathDash. The stored results include 
(i) KEGG or GO path name, (ii) raw and FDR-corrected P-values, (iii) binomial test statistic, 
and (iv) median logFC value of genes in the pathway. The script to run pathway 
activation analysis can be found in the Git repository specified previously.

In addition to differential gene expression and pathway activation analyses, 
E.PathDash has data that link each KEGG pathway and GO term to their constituent 
genes, which was retrieved using the EnrichmentBrowser package (80). Using this 
information, the E.PathDash interface links pathway activation analysis and differential 
gene expression analysis results.

The data collection, cleaning, and analysis were performed offline in order to 
minimize the amount of processing the application needed to do in real time, facilitating 
a better user experience. The collection and analysis steps were split into the two 
R scripts mentioned previously, which were run in succession on the compiled data 
sets. The scripts utilize several R packages in addition to the KEGGREST and Enrich­
mentBrowser packages: “stringr” for string manipulation, “readxl” for file ingestion, and 
“tidyverse” for data frame manipulation (81–83).
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FIG 9 (A) Boxplot showing pathway analysis results for GEO data set GSE142448, which measures responses of P. aeruginosa to manuka honey and its 

components. The plot shows distributions of the gene logFC values for KEGG pathways differentially expressed between artificial honey and manuka honey, 

which has a well-known antibacterial effect. (B) Bar plot showing how the KEGG biofilm formation pathway is expressed across all treatment comparisons in GEO 

data set GSE166602, which exposed P. aeruginosa to different gyrase inhibitors.
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Application design

All the application code for E.PathDash is contained in the app.R file, which has two 
components, “ui” and “server,” that define a reactive web application. The code in the 
“ui” component is responsible for the implementation of the interface. In E.PathDash, this 
consists of a menu sidebar, a header, and four main dashboards (Fig. 2). The interface 
is rendered as a single HTML page and elements are hidden or shown based on the 
application state. The interface components are implemented by the “shinydashboard” R 
package (84).

The “server” component loads the backend database and defines the results that are 
returned to the UI in response to how a user interacts with the application. The server 
code is split into sections that correspond to the four dashboards. Together with the “ui” 
component, this code utilizes several R libraries for plotting and design: “plotly” for all 
application plots and “shinycssloaders,” “shinyBS,” and “shinyjs” for design functionality 
(85–88). For additional design customization, the app.R file loads a custom CSS design 
file.

Pathway visualizations

In addition to displaying pathway analysis results in a table format, E.PathDash shows 
visualizations that enhance the user’s ability to compare different pathway activation or 
repression patterns within and across studies.

Boxplots show KEGG pathway and GO term activation and repression within a single 
study (Fig. 9A). The boxplots capture the distribution of the logFC values for genes within 
each statistically significant activated/repressed KEGG pathway and GO term (adjusted 
P-value < 0.05). Showing the distribution of logFC values for genes within the pathway 
communicates repression/activation strength between treatment groups. The distribu­
tions are colored based on whether the pathway is activated or repressed (positive or 
negative median logFC value).

When comparing pathway activation between studies, a bar chart shows pathway 
activation patterns across all possible treatment comparisons within each study (Fig. 
9B). Plots show the median logFC value for the genes within the KEGG pathway or GO 
term, and the treatment comparison and median logFC value are displayed in a popup 
message upon hovering over each bar in the chart.
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