
 | Bacteriology | Research Article

Pseudomonas aeruginosa transcriptome analysis of metal 
restriction in ex vivo cystic fibrosis sputum

Samuel L. Neff,1 Georgia Doing,1 Taylor Reiter,2 Thomas H. Hampton,1 Casey S. Greene,2 Deborah A. Hogan1

AUTHOR AFFILIATIONS See affiliation list on p. 22.

ABSTRACT Chronic Pseudomonas aeruginosa lung infections are a feature of cystic 
fibrosis (CF) that many patients experience even with the advent of highly effective 
modulator therapies. Identifying factors that impact P. aeruginosa in the CF lung 
could yield novel strategies to eradicate infection or otherwise improve outcomes. To 
complement published P. aeruginosa studies using laboratory models or RNA isolated 
from sputum, we analyzed transcripts of strain PAO1 after incubation in sputum from 
different CF donors prior to RNA extraction. We compared PAO1 gene expression in 
this “spike-in” sputum model to that for P. aeruginosa grown in synthetic cystic fibrosis 
sputum medium to determine key genes, which are among the most differentially 
expressed or most highly expressed. Using the key genes, gene sets with correlated 
expression were determined using the gene expression analysis tool eADAGE. Gene 
sets were used to analyze the activity of specific pathways in P. aeruginosa grown in 
sputum from different individuals. Gene sets that we found to be more active in sputum 
showed similar activation in published data that included P. aeruginosa RNA isolated 
from sputum relative to corresponding in vitro reference cultures. In the ex vivo samples, 
P. aeruginosa had increased levels of genes related to zinc and iron acquisition which 
were suppressed by metal amendment of sputum. We also found a significant correlation 
between expression of the H1-type VI secretion system and CFTR corrector use by the 
sputum donor. An ex vivo sputum model or synthetic sputum medium formulation that 
imposes metal restriction may enhance future CF-related studies.

IMPORTANCE Identifying the gene expression programs used by Pseudomonas 
aeruginosa to colonize the lungs of people with cystic fibrosis (CF) will illuminate 
new therapeutic strategies. To capture these transcriptional programs, we cultured 
the common P. aeruginosa laboratory strain PAO1 in expectorated sputum from CF 
patient donors. Through bioinformatic analysis, we defined sets of genes that are more 
transcriptionally active in real CF sputum compared to a synthetic cystic fibrosis sputum 
medium. Many of the most differentially active gene sets contained genes related to 
metal acquisition, suggesting that these gene sets play an active role in scavenging for 
metals in the CF lung environment which may be inadequately represented in some 
models. Future studies of P. aeruginosa transcript abundance in CF may benefit from the 
use of an expectorated sputum model or media supplemented with factors that induce 
metal restriction.

KEYWORDS cystic fibrosis, sputum, ex vivo

P seudomonas aeruginosa is a common cause of acute, hospital-acquired infections 
(1). Outside the hospital setting, chronic P. aeruginosa infections can occur in 

individuals with decreased immune-protective mechanisms including people with the 
genetic disease cystic fibrosis (CF) (2–5). In people with CF (pwCF), dysfunction of the 
anion transporter protein CFTR leads to the buildup of thick, sticky mucus in the lungs 
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and other organs (6–8). Most pwCF experience defective mucociliary clearance and 
impaired defense against opportunistic pathogens (9, 10). Patients are susceptible to 
colonization by a broad range of bacterial and fungal pathogens (11–16). P. aeruginosa 
infection specifically tends to be more prevalent in older pwCF, where it is associated 
with reduced lung function, higher rates of hospitalization, and increased mortality (4, 
5). Furthermore, antibiotic resistance is common in P. aeruginosa clinical isolates (17). 
Though recent advances in the treatment of CF (namely highly effective modulator 
therapies) have dramatically improved the expected life span, these treatments do not 
appear to eradicate established P. aeruginosa infections in most cases though they may 
reduce bacterial burden and virulence (18–21).

To understand how P. aeruginosa can persist in the CF lungs, it is important to 
acquire a more complete understanding of the transcriptional programs that govern the 
biological behavior of the bacterium. The biological behavior of any given P. aeruginosa 
isolate is determined by multiple factors. Genetic elements—intrinsic to the strain or 
acquired through horizontal gene transfer—can confer virulence traits or resistance to 
antibiotics (22–24). Additionally, P. aeruginosa virulence can be driven by aspects of the 
surrounding environment. Factors such as the composition of mucus or the community 
of other microbes in the lungs can have a major impact on P. aeruginosa phenotype, 
including virulence traits (25–28). These differences in phenotype can be associated with 
molecular profiles using high-throughput -omics techniques. For example, P. aeruginosa 
can modify its metabolic profile during the course of chronic lung infection, adopt­
ing specific “metabotypes” that are associated with increased virulence and antibiotic 
resistance (29). Likewise, researchers aim to draw associations between other -omics 
modalities (P. aeruginosa gene expression, protein expression, etc.) and virulence traits.

The metal acquisition activity of P. aeruginosa in the CF lungs has been a recent area 
of focus. Despite relatively high levels of metals such as zinc and iron in CF sputum 
compared to healthy individuals (30), several studies have shown that P. aeruginosa 
exhibits a zinc and iron restriction response due to the conditions of the CF lung (31–34). 
This counterintuitive phenomenon appears to be driven, at least in part, by the activity in 
CF sputum of human calprotectin, a metal-binding protein produced by neutrophils (31). 
Other metal sequestering molecules produced by the host or other microbial species in 
the CF lung play a role as well—for example, the S. aureus metallophore staphylopine, 
which competes for zinc and other metals (35, 36). Understanding the subtleties of 
the P. aeruginosa metal response—what genes are involved and what biological factors 
in the CF lung are driving their expression—is clinically important. Both zinc and iron 
intake have been associated with virulence traits like swarming motility and biofilm 
formation, as well as interaction with other CF pathogens (32, 37, 38). In addition, the 
concentrations of iron and zinc in sputum correlate inversely with clinical outcomes (30, 
39). Further defining the transcriptomic signatures associated with this metal restriction 
response—as well as other transcriptomic signatures that define P. aeruginosa growth in 
CF sputum—could help predict patient clinical outcomes and illuminate new therapeu­
tic strategies.

In this study, we sought to compare P. aeruginosa transcriptional profiles after growth 
in either an artificial sputum medium (40, 41) or in donated expectorated CF sputum. We 
used an experimental model in which the commonly used strain PAO1 was “spiked-in” to 
expectorated sputum and incubated prior to RNA extraction, sequencing, and RNA-seq 
analysis (31). The spike-in model has three intrinsic advantages over sequencing P. 
aeruginosa clinical isolates directly in CF sputum (i.e., gathering sputum from CF donors 
and sequencing the bacterial isolates that are present in the sputum directly). First, in the 
sputum of CF patients, the fraction of total extracted RNA from P. aeruginosa can be low 
and highly variable. This may impair the ability to detect and analyze lowly expressed 
P. aeruginosa genes. Second, the use of a single strain from a common inoculum 
allows for analysis of environmental conditions across sputa without the complication 
of strain-to-strain differences. Lastly, using the experimental model, we were able to 
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directly manipulate the metal restriction response by comparing P. aeruginosa transcript 
abundance in sputum with and without the addition of iron, zinc, and manganese.

After setting up the experimental model and performing RNA sequencing, we 
analyzed differential gene expression and pathway activation to compare profiles of 
P. aeruginosa grown in CF sputum and synthetic cystic fibrosis sputum medium (SCFM2) 
(42) and further assessed how gene expression was affected by added metals. Nota­
bly, we found that genes related to zinc and iron acquisition have significantly higher 
transcript abundance in CF sputum than SCFM2 and that correlated gene sets contain­
ing these metal acquisition genes were repressed in a coordinated manner when the 
spike-in samples were treated with a mixture of metals. We further examined correlations 
between the average expression of all identified gene sets and donor characteristics 
like lung function (FEV1) and the use of different drugs. We report significant negative 
correlations between CFTR potentiator usage and the activity of specific gene sets, 
including one associated with the type VI secretion system, a well-known P. aeruginosa 
mechanism for microbe-microbe interactions. Relative to laboratory grown controls, P. 
aeruginosa transcriptomes from the ex vivo model compared favorably to profiles from 
P. aeruginosa RNA isolated from sputum published by Lewin et al. (43) with some of the 
differences likely being driven by differences in strain.

RESULTS

Ex vivo spike-in model for the analysis of P. aeruginosa transcriptomes in 
sputum

To determine if there are P. aeruginosa gene expression signals associated with exposure 
to CF sputum that are not adequately captured by laboratory media, we developed an ex 
vivo spike-in sputum model. In this model, P. aeruginosa strain PAO1 cultures were grown 
to mid-exponential phase (~0.5 OD600 nm) in M63 medium containing 0.2% glucose with 
high aeration and added zinc, iron, and manganese as described in the methods. The 
metal addition was sufficient to suppress the expression of metal acquisition genes in 
pilot studies. The P. aeruginosa cells were washed and concentrated to an OD600nm of 10 
prior to inoculation into sputum or SCFM2 medium (42).

This study includes the analysis of P. aeruginosa grown in sputum collected from 17 
CF donors. The donors are distinguished by a variety of characteristics including whether 
they are on inhaled, oral, or IV antibiotics (and what kind they are on), whether they 
had been receiving CFTR potentiator therapy or not, which CF pathogens they had 
cultured at the time of the sample collection and which pathogens were repeatedly 
detected during the preceding 2 years (Table 1). For each sputum aliquot (>200 µL), the 
sample was homogenized and then divided into two 100 µL aliquots. One aliquot was 
amended with three metals (iron, zinc, and copper) at final concentrations of 300 µM 
ammonium ferrous sulfate, 150 µM zinc sulfate, and 10 µM manganese chloride. Other 
sputum samples received only water. Sputum aliquots and SCFM2 (also at a volume of 
100 µL) were placed into 1.5-mL Eppendorf tubes, inoculated with OD 1 equivalent of P. 
aeruginosa in 10 µL, and incubated with gentle agitation and open caps in a humidified 
chamber for 3 h (see Materials and Methods). Total RNA was extracted and processed via 
Salmon as described previously (44, 45).

PAO1 transcript abundance in the spike-in sputum model systematically 
differs from artificial sputum medium

First, we performed differential gene expression analysis to understand how the 
transcriptomes of P. aeruginosa strain PAO1 in CF sputum compared to those for cells 
grown in SCFM2. Analysis of the PAO1 transcriptome in CF sputum compared to SCFM2 
found 2,364 genes that were significantly differentially expressed (FDR corrected P 
value < 0.05) in CF sputum compared to SCFM2 (Table S1) (46). Furthermore, principal 
component analysis (PCA) clearly distinguished the SCFM2 and spike-in CF sputum 
samples (Fig. 1A). Most of the spike-in sputum samples clustered relatively closely, as did 
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the SCFM2 samples, though three sputum samples (from donors 124, 204, and 239) were 
quite distinct from both the other spike-in samples and the SCFM2 samples (Fig. 1A).

Pathway activation analysis was performed with the edgeR differential expression 
data as input using the web application ESKAPE Act Plus. This form of pathway analysis 
is based on the binomial test. Assuming that positive and negative fold changes in gene 
expression are equally likely, the statistical significance of pathway activation/repression 
is based solely on the proportion of genes with positive or negative fold changes, not 
the proportion of genes with a FDR-corrected P value less than 0.05. Thus, a significantly 
“activated” pathway will have a higher proportion of genes with a positive fold change 

TABLE 1 Clinical characteristics of CF donorsa

Subj. ID FEV1 Antibiotic usage Potentiator
therapy

Sputum microbiology
details

Reported chronic 
infections (2 years)

105 88 No inhaled abx; No oral abx; IV abx (ceftazidime, 
tobramycin)

No Pa (mucoid and nonmucoid), 
Candida albicans

Pa (mucoid and 
nonmucoid), Candida 
albicans

106 35 Inhaled abx (cayston); oral abx unknown; IV abx 
unknown

N/A N/A Burkholderia sp.

108 38 Inhaled abx (colistin); oral abx (azithromycin, other); IV 
abx (meropenem)

No Burkholderia sp.,
C. albicans

Burkholderia sp.

120 22 Inhaled abx (cayston); oral abx (azithromycin); IV abx 
(ceftazidime)

Yes Pa (mucoid and non-mucoid) 
Burkholderia sp.

Pa (mucoid 
and non-mucoid) 
Burkholderia sp.

122 86 No inhaled abx; oral abx (other); IV abx (ceftazidime) No MSSA, C. albicans, Aspergillus sp. MSSA, C. albicans, 
Aspergillus sp.

124 91 Inhaled abx (cayston, other); oral abx (doxycycline, 
other); no IV abx

Yes Pa (mucoid and nonmucoid), MSSA, 
C. albicans

Pa (mucoid and 
nonmucoid), MSSA, 
C. albicans; Aspergillus 
sp.

125 38 No inhaled abx; oral abx (azithromycin); IV abx 
(meropenem, tobramycin)

No Pa (mucoid),
C. albicans

Pa (mucoid),
C. albicans

133 68 No inhaled abx; oral abx (other); IV abx (other) Yes Candida sp. Candida sp.
138 45 Inhaled abx (cayston, other); no oral abx; no IV abx Yes Pa (mucoid and nonmucoid), C. 

albicans
Pa (mucoid and 

nonmucoid), C. 
albicans

145 34 Inhaled abx (tobramycin); no oral abx; no IV abx Yes Pa (mucoid), MRSA Pa (mucoid), MRSA; 
Aspergillus sp.

153 86 No inhaled abx; no oral abx; IV abx (ceftazidime, 
vancomycin, tobramycin)

Yes MRSA,
Candida sp.

MRSA,
Candida sp.

201 56 No inhaled abx; oral abx (ciprofloxacin); IV abx (other) No MRSA MRSA
203 64 Inhaled abx (tobramycin); oral abx (azithromycin); IV 

abx (ceftazidime)
No Pa (mucoid) Pa (mucoid); C. 

albicans;
Candida sp.

204 48 No inhaled abx; no oral abx; IV abx (ceftazidime, 
tobramycin)

Yes Pa (mucoid), C. albicans Pa (mucoid), C. 
albicans

220 69 No inhaled abx; oral abx (azithromycin); No IV abx Yes Pa (nonmucoid), MSSA Pa (nonmucoid), MSSA
233 22 Inhaled abx (tobramycin, cayston); oral abx 

(azithromycin, ciprofloxacin, other); IV abx 
(meropenem, vancomycin)

No Pa (mucoid and nonmucoid), MRSA, 
Bulkholderia sp.

Pa (mucoid and 
nonmucoid), MRSA, 
Bulkholderia sp.

239 53 Inhaled abx (cayston); oral abx (azithromycin); IV abx 
(ceftazidime, tobramycin)

Yes Pa (mucoid), Aspergillus sp. Pa (mucoid), 
Aspergillus sp.

243 45 Inhaled abx (other); oral abx (other); IV abx (ceftaro­
line)

Yes MRSA, C. albicans MRSA, C. albicans

aFEV1, percent predicted forced expiratory volume in one second; Abx, antibiotics; IV, intravenous; Pa, P. aeruginosa; MSSA, methicillin-sensitive S. aureus; MRSA, methicillin-
resistant S. aureus; N/A, not available; reported chronic infections (2 years), microbes that were repeatedly detected over 2 years. Donor 102 provided gene expression data 
and is identified in subsequent figures but does not have associated metadata and, therefore, is not represented in this table.
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than expected by chance, while a significantly “repressed” pathway will have a higher 
proportion of genes with a negative fold change than expected by chance (47). This 
approach contrasts with the “gene set enrichment analysis” (GSEA) approach where 
genes are ranked by their fold change and significiance of differential expression, and 
pathways are deemed “enriched” when a high proportion of genes (compared to the 
proportion expected by chance) are found at either the top or the bottom of this ranked 
list. Given the relatively large total number of significantly differentially expressed genes 
in this study (see discussion of limitations below), we opted for a pathway activation 
analysis approach.

Pathway activation analysis identified 18 functional pathways (GO terms) that were 
significantly activated or repressed between the SCFM2 and spike-in sputum samples 
with an FDR-corrected P value < 0.05. Compared to culture in SCFM2, PAO1 grown 
in CF sputum exhibited elevated expression of genes related to metal acquisition (GO 
terms: pyoverdine biosynthesis, iron ion homeostasis, siderophore uptake transmem­
brane transporter activity, zinc ion binding). In addition to metal acquisition signatures, 
PAO1 growth in CF sputum is also distinguished from SCFM2 by the activation of GO 

FIG 1 Transcriptional profiles of P. aeruginosa strain PAO1 after incubation in CF sputum or SCFM2. (A) PCA, considering all genes detected by RNA sequencing, 

clusters the CF sputum and SCFM2 samples separately, with most CF sputum samples clustering closely together. (B) The pathway activation analysis identified 

18 significantly activated or repressed GO terms in expectorated CF sputum compared to SCFM2. Pink pathways are activated in CF sputum compared to SCFM2 

and green pathways are repressed (C) All key genes listed in Table 2 that were identified as highly differentially expressed between the CF sputum and SCFM2 

samples were elevated in their expression across most of the CF sputum samples compared to SCFM2. (D) The key genes that were identified for their high 

average expression across P. aeruginosa grown in different CF sputum samples are also shown, demonstrating further differences between the three outlier 

sputum samples (Spu124, Spu204, Spu239) and the rest of the spike-in sputum samples, as well as the SCFM2 samples. Heat map panels C and D present 

log2-transformed and normalized count levels, as indicated in the legends.
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terms related to LPS biosynthesis, vitamin B biosynthesis, type III secretion, and the DNA 
damage response (Fig. 1B).

Beyond characterizing the broad differences between sample groups, we narrowed 
a much shorter list of “key genes” that characterize PAO1 transcript abundance in CF 
sputum on the basis of differential expression, abundance, and involvement in processes 
other than translation/protein synthesis, cell division, or ATP synthesis (Table 2). For the 
prioritization of genes by differential expression, we first identified the genes that were 
most highly differentially expressed in the spike-in sputum samples compared to SCFM2. 
This involved first taking the subset of genes with a positive fold difference and then 
identifying genes in this subset with a fold change value in the top 10%, a logCPM value 
in the top 10%, and an uncorrected P value < 0.05 (all three conditions had to be met at 
once for a gene to be considered a “key gene”). To identify key genes by high expression 
in CF sputum, even if they are also highly expressed in SCFM2, the 50 genes with the 
highest average count values across just the spike-in CF sputum samples were included. 

TABLE 2 Key genes that describe PAO1 transcripts most strongly differentially expressed in the spike-in sputum model compared to when grown in SCFM2 
and/or genes most highly expressed in P. aeruginosa grown in ex vivo sputum

Locus ID Gene name Protein name High DE (sputum vs 
SCFM2)

High ave expression in 
sputum

PA4669 ispE 4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase Y N
PA5171 arcA Arginine deiminase N Y
PA5170 arcD Arginine/ornithine antiporter N Y
PA2620 clpA ATP-binding protease component N Y
PA1092 fliC B-type flagellin N Y
PA4542 clpB Chaperone protein N Y
PA4761 dnaK Chaperone protein DnaK (HSP70) N Y
PA4385 groEL Chaperonin N Y
PA4221 fptA Fe(3+)-pyochelin receptor Y N
PA4470 fumC2 Fumarate hydratase Y Y
PA1596 htpG Heat shock protein N Y
PA2623 icd Isocitrate dehydrogenase N Y
PA1803 lon Lon protease N Y
PA2853 oprI Major outer membrane lipoprotein N Y
PA5568 yidC Membrane protein insertase Y N
PA0524 norB Nitric oxide reductase Y N
PA1777 oprF Outer membrane porin N Y
PA5178 PA5178 Peptidoglycan-binding protein LysM N Y
PA4243 secY Protein translocase N Y
PA4837 cntO Pseudopaline receptor

(Zn uptake)
Y N

PA4226 pchE Pyochelin synthase Y N
PA4225 pchF Pyochelin synthase Y N
PA2424 pvdL Pyoverdine biosynthesis Y Y
PA2386 pvdA Pyoverdine biosynthesis Y N
PA2402 pvdI Pyoverdine biosynthesis Y Y
PA2400 pvdJ Pyoverdine biosynthesis Y Y
PA2399 pvdD Pyoverdine synthetase Y Y
PA4670 prs Ribose-phosphate pyrophosphokinase Y N
PA0762 algU RNA polymerase sigma factor N Y
PA0763 mucA Sigma factor AlgU negative regulatory protein N Y
PA4468 sodA Superoxide dismutase Y N
PA3006 psrA Transcriptional regulator Y N
PA4748 tpiA Triosephosphate isomerase Y N
PA4525 pilA Type IV major pilin protein PilA N Y
PA2685 vgrG1c Type VI secretion system spike protein Y N
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Lastly, genes involved in translation, cell division, or ATP production (60 genes in total) 
were removed from the list of genes for this analysis to focus on genes that are involved 
in functions beyond cellular maintenance, but it is acknowledged that the analysis of 
expression of these genes may yield important information. These excluded genes are 
described further in the methods and included in Table S2 and are available for future 
analyses. The above method for gene prioritization yielded 35 key genes (Table 2).

Of 18 key genes that were identified based on increased expression in the donated 
sputum samples relative to expression in cells grown in SCFM2 (Fig. 1C), the most 
notable characteristic was an association with metal acquisition, including the gene 
encoding the zincophore pseudopaline receptor cntO, which is implicated in zinc uptake 
(48), and iron acquisition genes including the pyochelin receptor fptA and pyochelin and 
pyoverdine synthesis genes (pchE, pchF, pvdA, pvdD, pvdJ, pvdL) (49, 50). The expression 
of sodM and fumC1 has also been shown to be regulated as part of a response to iron 
limitation particularly in cells with high AlgU activity (51). The elevated expression of 
these genes in donated CF sputum suggests that P. aeruginosa is experiencing conditions 
of metal restriction, as previous studies have suggested in studies with smaller sets of 
sputum samples and using different approaches (31–34). The additional implication of 
the results in this study is that this metal restriction phenotype is not displayed, or at 
least not displayed as acutely, in SCFM2. Other key genes that are more highly expressed 
in CF sputum are discussed in more detail below.

Seventeen of the 35 key genes identified were selected by high abundance in sputum 
(Table 2; Fig. 1D). Of these, all but four were also among the highest average expression 
(in the top 10% of genes by average expression) in a separate normalized compendium 
of 890 RNA-seq samples for P. aeruginosa strain PAO1 grown in diverse conditions in 
different labs and with different engineered mutations that we published previously, 
suggesting that they were generally highly expressed (44). The four genes that had high 
expression in sputum that were not among the top 10% of genes by average expression 
in the PAO1 RNA-seq compendium were algU, mucA, htpG (heat shock response protein), 
and PA5178 (peptidoglycan-binding protein). The high expression of the sigma factor-
encoding gene algU/algT and mucA, which encodes an anti-sigma factor that regulates 
AlgU, is interesting in light of the frequent mucA mutations observed in P. aeruginosa 
isolates from CF-related lung infections (52, 53). AlgU has also been implicated in 
the response to oxidative stress and a variety of other stressors. Indeed, prior studies 
have noted that the hyperinflammatory state of the CF lungs generates conditions 
of oxidative stress, which has been associated with the prevalence of hypermutable, 
antibiotic-resistant P. aeruginosa isolates (54, 55).

There was some degree of variation in PAO1 key gene expression across the CF 
sputum samples (Fig. 1C and D). Heat map analysis of the normalized expression of 
key genes (as counts per million, CPM) that are more highly expressed in CF sputum 
relative to SCFM (Fig. 1C) found that samples clustered into several distinct groups. Most 
distinct are the three sputum samples (Spu124, Spu204, Spu239) that are also clustered 
distinctly in the PCA plot (Fig. 1A). These samples exhibited decreased expression of 
metal acquisition genes relative to the other spike-in samples, and increased expres­
sion of certain other key genes (ispE, yidC, tpiA, prs, and vgrG4). Several other sputum 
samples (Spu125, Spu138, Spu145) also stood out for their reduced expression of metal 
acquisition genes though the difference is less stark. Figure panel 2D, which includes 
genes characterized by high average expression across the CF sputum samples, further 
distinguished outlier samples Spu124, Spu204, and Spu239 from the other sputum 
samples in terms of their gene expression profile. There were no obvious differences in 
donor or sputum characteristics (Table 1) that could explain these differences.

Identifying correlated gene sets that distinguish PAO1 gene expression in 
real CF sputum and SCFM

Analysis of the P. aeruginosa transcriptome in CF sputum from different donors can also 
reveal sets of genes with correlated expression. Correlated gene sets may be part of the 
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same operon or regulon and/or simply responsive to the same external conditions. Like 
biological pathways (e.g., GO terms), these correlated gene sets may be more or less 
active as a unit between different groups of samples.

To identify correlated gene sets, we used the key genes that we identified as 
characteristic of P. aeruginosa strain PAO1 when grown in CF sputum (Table 2) to 
define gene sets containing other genes with highly correlated expression patterns. 
Specifically, we used the ADAGE web application to identify correlated gene sets (56, 
57). The application is based on eADAGE, a neural network model trained on a compen­
dium of over 1,000 P. aeruginosa microarray data sets generated by different labs for 
different purposes. The eADAGE model has been used previously to identify robust gene 
expression patterns (56, 57). Many gene sets identified by ADAGE contained genes within 
a common KEGG pathway and often genes within the same operon were part of the 
same gene set (Table 3).

For each of the 35 key genes, ADAGE was used to determine the 10 genes (including 
the key gene) that are best correlated in gene expression. If ADAGE identified fewer 
than 10 correlated genes across its associated compendium, all correlated genes were 
included. If two gene sets had 5 or more correlated genes in common, they were 
consolidated into a single gene set—bringing the total number of gene sets down to 

TABLE 3 Core genes and associated gene ontology (GO) Terms for gene sets

Gene set Core gene(s) Associated GO terms

1 cntO Zinc ion transport [GO:0006829]
2 sodA Removal of superoxide radicals [GO:0019430], siderophore transport [GO:0015891], heme oxidation 

[GO:0006788]
3 pchE, fptA, pchF Pyochelin biosynthetic process [GO:0042864]
4a6 pvdA, pvdL, pvdI, pvdD, pvdJ Pyoverdine biosynthetic process [GO:0002049]
5 fumC2 Tricarboxylic acid cycle [GO:0006099]
7 prs, secY Ribonucleoside monophosphate biosynthetic process [GO:0009156]; protein transport by the Sec 

complex [GO:0043952]; chaperone-mediated protein folding [GO:0061077]
8 tpiA Glycolytic process [GO:0006096]; gluconeogenesis [GO:0006094]; glycerol catabolic process 

[GO:0019563]; protein secretion [GO:0009306]
9 vgrG1c Protein secretion by the type VI secretion system [GO:0033103]
10 norB Denitrification pathway [GO:0019333]
11 ispE Terpenoid biosynthetic process [GO:0016114]
12 yidC Protein transport by the Sec complex [GO:0043952]; lipopolysaccharide transport [GO:0015920]
13 psrA Fatty acid beta-oxidation [GO:0006635]; electron transport chain [GO:0022900]
14 oprI Lipid A biosynthetic process [GO:0009245], DNA recombination [GO:0006310]; positive regulation of 

transcription [GO:0045893]; regulation of translation [GO:0006417]
15 oprF Ribosome disassembly [GO:0032790], cell division [GO:0051301]; protein polymerization [GO:0051258]
16 groEL mopA, dnaK, htpG, clpB Chaperone cofactor-dependent protein refolding [GO:0051085]; protein folding [GO:0006457]; protein 

quality control for misfolded or incompletely synthesized proteins [GO:0006515]
17 pilA Type IV pilus-dependent motility [GO:0043107]; DNA restriction-modification system [GO:0009307]
18 algU, mucA Cellular response to cell envelope stress [GO:0036460] or oxidative stress [GO:1902884]; alginic 

acid biosynthetic process [GO:0042121] bacterial-type flagellum-dependent swarming motility 
[GO:0071978]; type IV pilus-dependent motility [GO:0043107]

19 clpA Protein unfolding [GO:0043335]; proteolysis [GO:0006508]
20 arcD, arcA Arginine deiminase pathway [GO:0019546]; lipopolysaccharide core region biosynthetic process 

[GO:0009244]
21 fliC Bacterial-type flagellum-dependent cell motility [GO:0071973]
22 PA5178 Regulation of gene expression [GO:0010468], response to potassium ion [GO:0035864],cellular response 

to antibiotic [GO:0071236]; regulation of nitrogen utilization [GO:0006808]
23 icd FtsZ-dependent cytokinesis [GO:0043093]; tricarboxylic acid cycle [GO:0006099]; regulation of RNA 

stability [GO:0043487]
24 lon Chaperone cofactor-dependent protein refolding [GO:0051085]; protein refolding [GO:0042026]; 

intracellular iron ion homeostasis [GO:0006879]
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24 (Table S2). Gene sets 4 and 6, though not meeting our criteria for consolidation, 
contained genes that are part of the same pvd operon. Thus, they were combined into 
a single gene set. For all but one gene set (gene set 9), all genes that were identified 
as correlated in expression by ADAGE had a Pearson correlation coefficient relative 
to the key gene of 0.5 or greater, and they were also positively correlated in their 
expression across our spike-in sputum samples. Component genes within gene sets 
were part of common processes as shown by mapping to one or several related “GO 
biological process” terms using the Uniprot ID Mapping Tool. A small number of genes 
were present in multiple different gene sets as indicated (Table S2). After identifying 
and characterizing individual gene sets, we analyzed the activity of each gene set for 
each sample’s transcriptome using the average normalized gene expression for all the 
genes in each gene set. This yielded a matrix of average gene expression values for each 
gene set in each sample (Table S3). which could be compared across samples based 
on z-scores (Fig. 3A). The median value for each gene set for samples from SCFM2 and 
sputum was also determined (Table S4).

The P. aeruginosa gene sets that were differentially active in sputum compared 
to SCFM included those related to zinc and iron acquisition (1, 2, 3, and 4a6) and 
also includes gene sets 7, 8, 11, 12, and 13, related to nucleotide biosynthesis, sugar 
biosynthesis, terpenoid biosynthesis, protein transport, LPS transport, and fatty acid 
oxidation respectively (see Table S2 for genes within gene sets). In contrast, there were 
five gene sets where average expression is quite high in SCFM relative to CF sputum. This 
includes gene sets 5, 17, 19, 21, and 22, with functional associations including the TCA 
cycle, type IV pilus-dependent motility, proteolysis, flagellar motility, and the potassium 
response, respectively.

We found that the 14 CF sputum transcriptomes that clustered together in the PCA 
plot (Fig. 1A) also clustered together by gene set activity (Fig. 2A). The three “outlier” 
sputum samples (Spu124, Spu204, Spu239) clustered distinctly in this heatmap as they 
did in Fig. 1A. They are distinguished from the other 14 sputum samples mainly by the 
heightened average expression of gene sets 7, 8, 11, 12, and 13 (functional associations 
including nucleotide biosynthesis, sugar biosynthesis, terpenoid biosynthesis, protein 
transport, LPS transport, and fatty acid oxidation), the diminished average expression 
of gene sets 5,17,19, 21, and 22 (functional associations including the TCA cycle, type 
IV pilus-dependent motility, proteolysis, flagellar motility, and the potassium response), 
as well as gene sets 14, 15, 16, 18, 20, 23, and 24 (functional associations including LPS 
biosynthesis, oxidative stress response, alginate biosynthesis, swarming motility, type IV 
pilus-dependent motility, and the TCA cycle) relative to the main cluster of CF sputum 
samples.

Metal exposure drives the expression of gene sets linked to metal acquisition

The increased activity of gene sets related to metal acquisition in CF sputum relative to 
SCFM2 led us to hypothesize that the conditions of the CF lung deprive P. aeruginosa 
of metal and induce a metal restriction response that is not represented in the transcrip­
tional profile of P. aeruginosa grown in SCFM2. In an earlier study, using a similar spike-in 
sputum model with PAO1, we had demonstrated that expression of genes related to zinc 
acquisition was significantly elevated in CF sputum compared to M63 minimal medium 
and that addition of metals to CF sputum suppressed the expression of these genes near 
the levels observed in the M63 medium-grown cells (31). Here, we performed a similar 
experiment to assess the effects on gene expression of supplementing sputum with a 
mixture of zinc, iron, and manganese (as described in the Materials and Methods) prior to 
P. aeruginosa strain PAO1 incubation.

First, focusing on the expression levels of individual genes involved in zinc acquisition 
(gene set 1; Fig. 2B) and iron acquisition (gene set 4a6; Fig. 2C), we found that P. 
aeruginosa had lower expression of metal acquisition-associated genes in metal-treated 
samples than in untreated CF sputum, and the samples that received metal treatment 
clustered together. Analyzing the effects of added metals on gene set activity, we 

Research Article Microbiology Spectrum

April 2024  Volume 12  Issue 4 10.1128/spectrum.03157-23 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

12
 M

ar
ch

 2
02

5 
by

 1
68

.9
2.

23
6.

24
5.

https://doi.org/10.1128/spectrum.03157-23


found that all of the gene sets related to metal acquisition were responsive to metal 
treatment, and again metal-treated and non-treated samples clustered distinctly in terms 
of the expression of their individual genes (Fig. S1). When P. aeruginosa expression in 
metal-treated and untreated samples from each donor was compared, all the individual 
genes in these gene sets were repressed to a statistically significant degree in the 
metal-treated samples. For the four gene sets involved in zinc acquisition (gene set 1) 
and iron acquisition (gene sets 2, 3, and 4a6), metal exposure reduced gene set activity. 
This effect was observed at the level of overall expression: the average expression of 
all four metal acquisition gene sets was elevated in non-treated samples compared to 
metal-treated samples (Fig. 3A, D, G, and J). The paired plots in Fig. 3-panels A, D, G, and J 
further indicate that for each individual donor, metal exposure had the effect of reducing 
average gene expression (though for some donors, this effect was more dramatic than 
others). The effects of metal exposure are also visible at the level of individual gene 
expression. We performed an additional differential gene expression analysis with edgeR, 
comparing the collection of CF spike-in sputum samples treated with metals to those 

FIG 2 The average expression of each correlated gene set relating to metal acquisition across the spike-in sputum and SCFM2 samples. (A) Gene sets related to 

zinc and iron acquisition (1, 2, 3, 4, and 6), nucleotide (7), sugar (8), terpenoid biosynthesis (11), and fatty acid oxidation (13) were consistently elevated in the CF 

sputum samples compared to SCFM2. The SCFM2 samples (red) and sputum samples (light blue) are indicated along the bottom and metal acquisition-related 

gene sets (yellow) are indicated along the right side of the heat map in panel A. (B, C) Panels B and C demonstrate that for gene sets 1 (B) and 4a6 (C) the 

metal-treated and non-treated spike-in samples are clearly distinguished in terms of their gene expression at the individual gene level. In panels B and C, a darker 

red color indicates higher gene expression, while lighter orange/beige colors indicate reduced expression. Metal-treated samples are underlined brown. Versions 

of these heat maps for all 24 gene sets are included in Fig. S1.
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not treated with metals. Every one of the constituent genes in gene sets 1–4a6 saw their 
expression reduced at least four-fold with an FDR-corrected P value < 0.05 (Fig. 3-panels 
B, E, H, K). None of the other gene sets exhibited a consistent, correlated response to 
metal treatment (Fig. S2A).

FIG 3 Effects of metals on P. aeruginosa transcript levels in ex vivo sputum. Treatment with a metal mixture containing zinc and iron repressed activation of 

metal acquisition gene sets in a consistent and coordinated manner. For the four gene sets depicted, the spike-in sputum samples saw a substantial reduction in 

overall gene set activation after metal treatment. In each case, the median value for average gene set expression across the spike-in samples was brought closer 

to the median value for the three SCFM2 samples after metal treatment (A, D, G, J). At the individual gene level, all genes incorporated in the four gene sets saw 

their expression significantly reduced by metal treatment (FDR < 0.05, |Fold Change| > 4) (B, E, H, K). All individual genes had initially been significantly more 

highly expressed in CF sputum vs SCFM2 (C, F, I, L). The blue circles overlaid onto panels B and C represent the Zur regulon, while the blue circles overlaid onto 

panels K and L represent the pvd regulon. We further analyzed associations between the average expression of the metal acquisition gene sets and donor clinical 

parameters. There were slight negative associations between average gene set expression and donor FEV1 for each of the metal acquisition gene sets though 

none of these associations were statistically significant (Fig. S4). There were also significant negative associations between IV tobramycin use and the average 

expression of gene sets 1, 2, 4, and 6. Though the association did not remain significant after FDR correction, it is possible that IV tobramycin treatment could 

increase metal availability to P. aeruginosa or suppress the activity of P. aeruginosa metal acquisition genes by some other mechanism (Fig. S5).
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For all four gene sets shown in Fig. 4, metal supplementation reduced gene set 
activity in CF sputum so that it was closer to the level of gene set activity seen in SCFM2. 
The red line in Fig. 3 panels A, D, G, and J represents the median value for the average 
gene set expression across the three SCFM2 samples. Figure 3 panels C, F, I, and L further 
show that all the individual genes in gene set 4 are significantly more active in CF 
sputum vs SCFM2.

Two additional observations reinforce the finding that the metal acquisition response 
is elevated in CF sputum compared to SCFM2. First, pathway activation analysis 
found that GO terms related to metal acquisition (“siderophore uptake transmembrane 
transporter activity,” “pyoverdine biosynthetic process,” “regulation of iron ion transport”) 
were significantly repressed when the spike-in sputum samples were exposed to the 
metal mixture (Fig. S3; Table S5). Second, genes from the established Zur regulon (blue 
circles overlaid onto Fig. 3 panels B and C) and PvdS regulons (blue circles overlaid onto 
panels 3K and 3L), which overlap with certain genes in gene sets 1 and 4, respectively, 
are also more active in CF sputum vs SCFM2 and repressed by metal exposure.

Finally, we examined the correlation between total sample metal concentrations in 
CF sputum and the average expression of metal-acquisition related gene sets. Both 
zinc and iron concentrations in untreated sputum samples showed a significant positive 
correlation with the activity of metal acquisition gene sets 1, 2, 3, 4, and 6 (Fig. S6). In 
other words, as zinc and iron concentrations increased across the CF sputum samples, 
gene sets related to zinc and iron acquisition grew more, not less, active, despite the fact 
that treatment with metals clearly represses the activity of these gene sets. Even after 

FIG 4 Correlation of average expression of gene sets across the spike-in CF sputum samples. (A) Gene sets 7, 8, 11, 12, and 13 are anti-correlated in their 

average expression across samples with most of the other gene sets (which are generally well correlated). Gene set 10 is an outlier in that it is not particularly 

well correlated with any of the other gene sets. Two gene sets with a Pearson correlation closer to +1 are represented by a darker blue box, while two gene 

sets with a Pearson correlation closer to −1 are represented by a darker red box. The gene set numbers are indicated along the diagonal, and each colored box 

is associated with two gene sets—for example, the box four up from the bottom in the right-most column indicates the correlation between gene sets 5 and 

22. (B, C) Examples of gene set pairs that are (B) correlated and (C) anti-correlated. The red dots represent the three outlier samples (Spu124, Spu204, Spu239) 

referenced earlier in the manuscript.
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FDR correction, zinc concentration remained significant (FDR < 0.01) in its association 
with the average expression of all five metal acquisition genes, while iron concentra­
tion did not remain significantly associated. Though surprising in the context of Fig. 4, 
these findings are in line with the results of prior studies where P. aeruginosa exhibited 
elevated expression of metal acquisition genes despite zinc and iron concentrations 
being relatively high in CF sputum (30). This phenomenon may be due to the presence 
in CF sputum of other factors like human calprotectin or proteins from other microbes 
that sequester metals (31–34). One possible explanation for the trend of increasing PAO1 
metal acquisition gene set activity as metal concentrations rise is that a higher metal 
concentration means greater activity of these outside metal-sequestering factors, which 
could aggravate the P. aeruginosa metal restriction response.

Type VI secretion system activity is associated with oral antibiotic and CFTR 
potentiator usage

In addition to the gene sets associated with metal acquisition, we identified several other 
gene sets that are relevant for their association with P. aeruginosa virulence in the CF 
lung. Notably, gene set 9 contains a number of genes associated with one of three type 
VI (T6) secretion systems (T6SS) H1-T6SS: vgrG1c, tagF1, tssJ1, tssA1, tssC1, hcp1, tagJ1, 
tssE1, tssF1, tse5. T6SSs enable P. aeruginosa to secrete effector molecules that play roles 
in intra- and interspecies interactions, can interface with host cells, and may contribute 
to the progression of lung disease in CF patients (58, 59). Notably, Hcp1 has been 
detected in P. aeruginosa-containing CF sputum and individuals with CF-associated P. 
aeruginosa infections have anti-Hcp1 antibodies (60). The constituent genes of gene set 
9 are consistently more active in CF sputum compared to SCFM2 though the difference 
in expression was less dramatic than for the genes in the metal acquisition gene sets 
(Fig. S2B; Table S1). The genes in gene set 9 were not responsive to metal treatment 
(none of the genes in the gene set are significantly differentially expressed between the 
metal-treated and non-treated samples) and while higher average expression of gene 
set 9 was associated with oral antibiotic usage in general (P = 0.02, FDR = 0.20, adj. 
R2 = 0.32) and oral azithromycin usage in particular (P = 0.02, FDR = 0.51, adj. R2 = 
0.29), the association is not significant after FDR correction. Interestingly, there was a 
stronger, significant negative association (P = 0.0009, FDR = 0.02, adj. R2 = 0.56) between 
CFTR potentiator usage and the average expression of gene set 9, indicating that CFTR 
potentiator treatment may reduce type VI secretion activity in P. aeruginosa (Fig. S5).

As an additional assessment of gene set 9 (H1-T6SS) activity, we determined how its 
expression across samples was related to the expression of the other gene sets as the 
activity of one gene set may promote or inhibit the activity of others. Alternatively, it is 
possible that two gene sets are responsive to the same underlying biological factors. The 
average expression of all identified gene sets was correlated across the ex vivo sputum 
samples (not treated with metals) using Pearson correlation. The average expression 
of gene set 9 across samples was correlated with the average expression of the metal 
acquisition gene sets (gene sets 1, 2, 3, and 4a6), especially gene sets 2 and 3 (Fig. 
4A). In other words, the samples in which gene set 9 are most active are generally 
the same samples in which the metal acquisition gene sets are most active. Figure 
4A also identifies gene sets that are anti-correlated in their average expression across 
samples. The metal acquisition gene sets, for example, are strongly anti-correlated in 
their expression across samples with gene set 8, which has associations with gluconeo­
genesis. Figure 4B and C demonstrate more directly the correlations between gene set 2 
and gene sets 8 and 9. Notably, the three outlier samples noted earlier in the manuscript 
(from donors 124, 204, and 239) are distinguished by low average expression of gene sets 
2 and 9, and high average expression of gene set 8.
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The ex vivo sputum model effectively recapitulates the transcriptome of P. 
aeruginosa clinical isolates

To further analyze the data we obtained using ex vivo samples, with “spiked in” P. 
aeruginosa, we compared our results to those in Lewin et al. (43) which included 
transcriptome analysis of endogenous P. aeruginosa mRNA recovered directly from 
expectorated sputum donated by pwCF with P. aeruginosa lung infections (referred to 
as in vivo transcriptomes). Notably, the P. aeruginosa in vivo transcriptomes used were 
chosen because of the high read coverage across the PAO1 genome (43), and this 
high coverage allowed the authors to systematically compare the in vivo transcriptomes 
to strain PAO1 transcriptomes from cells grown in several model systems—including 
SCFM2 with and without the metal chelating innate immune factor calprotectin, an 
airway epithelial cell model, and a newly-constructed combination model of SCFM2 
and airway epithelial cells (epiSCFM2). The raw counts from the 37 samples from this 
study (17 ex vivo, 17 ex vivo + metals, and 3 SCFM2) and 63 samples from Lewin et 
al. (43) [24 expectorated sputum samples and 49 samples from SCFM2 without and 
with calprotectin, airway epithelial cells, and airway epithelial cells and ASM (epiSCFM2)] 
were normalized by library size. We first compared the in vivo transcriptomes to the 
P. aeruginosa transcriptomes from the ex vivo sputum samples and SCFM2-grown P. 
aeruginosa from this study and the aforementioned cell culture models using principal 
components analysis (Fig. 5). Along PC1, which describes ~18% of the variance, the 
in vivo and ex vivo samples separated from the Lewin in vitro models, as reported by 
Lewin et al. [Fig. S3 in (43)]. Among the genes found to most strongly contribute to 
this separation were those involved in iron uptake, sulfur metabolism, amino acid, and 
peptide uptake (Table S7), but no specific GO terms were enriched among these genes.

As shown in Fig. 5A, the transcriptomes from our SCFM2-grown cells did not cluster 
with those in (43), and we speculate that this is, at least in part, due to the differences 
in inoculum preparation, incubation time, and minor differences in components of 
the SCFM2 media recipes (43). For example, the SCFM2 cultures from this study were 
inoculated with cells from exponential phase cultures grown in the defined medium 
M63, and incubations were for 3 h in small volume cultures. The cultures in Lewin et al. 
(43) were inoculated from SCFM-grown cells, then grown for 16 or 16 h followed by an 
additional 8 h with cultured epithelial cells.

We applied the same method utilized in the Lewin et al. (43) study to assess the 
accuracy of transcript abundance in the ex vivo model relative to the clinical isolates. 
This involved calculating, for each gene in the Lewin et al. sputum transcriptomes, the 
mean transcript abundance. Then, the mean transcript abundance and z-score (number 
of standard deviations away from the mean of the clinical isolate samples) for each 
gene in the model samples was determined. If the z-score magnitude was less than 
two, the gene was considered accurately expressed in the model relative to the clinical 
isolate samples, again matching the standard in the Lewin et al. manuscript. The ex vivo 
sputum model accurately recapitulated the transcript abundance of 88.9% of genes, 
which compares favorably to the model systems described in the Lewin et al. study 
(SCFM2: 86.4%, airway epithelial cell: 84.7%, epiSCFM2: 87.8%) (Fig. 5B). By contrast, 
SCFM2 was 71.3% accurate, but the accuracy of SCFM2 samples for the metal-treated ex 
vivo samples was 86.4%, underscoring that SCFM2 does not model the metal availability 
state of P. aeruginosa.

Using the gene sets that we defined above, we determined if any were significantly 
different between the in vivo and in vitro samples from Lewin et al. (43). As shown in 
Fig. 5C, gene sets 1 (composed of genes induced in low zinc conditions) and gene set 2 
(composed of genes responsive to iron restriction) were the most activated in the in vivo 
condition relative to the in vitro controls. The gene set that was most lowly expressed 
in in vivo samples was gene set 17 which contained genes that we previously found 
to share transcriptional patterns across strains due to low sequence identity between 
strains (pilA and pilC) or being strain specific such as endogenous restriction-modification 
systems (PA2730-2734). The last gene in gene set 17 is PA1939 which is only found 
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in a small fraction of P. aeruginosa genomes. To investigate this further, we analyzed 
normalized expression of pilA (PA4525), which has striking allele differences across 
strains, and pilD, which does not show sequence divergence when different strains are 
compared (61) (Fig. 5D). We found that the expression of pilA was, on average, >200-fold 
higher in ex vivo samples than in vivo samples, but that some in vivo samples had high 
expression. The range of pilA expression across the in vivo samples was over 8,000-fold. In 

FIG 5 Comparison of in vivo and ex vivo sputum. (A) Though comparably accurate, the ex vivo sputum samples and the models analyzed by Lewin et al. are 

systematically different in their transcriptomic profiles. The ex vivo samples (not metal treated) and SCFM2 samples are found at the top left of the PCA plot, 

while the three models [SCFM2, airway epithelial cells (AEC), and epiSCFM2] from the Lewin et al. study occupy the right side of the PCA plot. The in vivo 

samples from the Lewin et al. study are the blue samples at the bottom left. Different sputum models of P. aeruginosa capture different features of the in vivo P. 

aeruginosa transcriptome. (B) The ex vivo model of PAO1 grown in expectorated CF sputum accurately captured 1,111 genes (147 + 964) that were not accurately 

captured by SCFM2. The addition of metals lowered the extent to which the ex vivo sputum model resembled the in vivo transcriptome, with 242 genes (147 

+ 95) accurately captured in the non-treated ex vivo samples that were not accurately captured in the metal-treated samples. (C) A volcano plot showing the 

difference in gene set activity (Activity Difference) and significance of the differences for each gene set (see Table 3) in a comparison to data from Lewin et al. (43) 

of P. aeruginosa RNA isolated from sputum or laboratory controls. Comparisons were made using a linear model. (D) Normalized counts for pilA (divergent across 

strains) and pilD (highly conserved across strains) or genes involved in O-antigen biosynthesis (variable by strain) in in vivo sputum, ex vivo sputum, and in vitro 

samples. The teal bar indicates SCFM2 samples from this study and the green bar indicates laboratory samples from Lewin et al. (43).
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contrast, pilD, which does not show sequence variation, was not different between in vivo 
and ex vivo samples and had a fourfold range across the in vivo samples. As discussed 
further below, we predict that these differences are due to the reads from the ex vivo 
samples in this study being largely from strain PAO1 which was in excess of endogenous 
P. aeruginosa, while the in vivo samples contained only reads from different infecting 
strains of P. aeruginosa. Consistent with this, pilA was chosen as a gene to nucleate a 
gene set in our studies because of high expression, but not differential expression in our 
samples (Table 2). Other “strain specific” gene sets that were lower in in vivo samples 
than corresponding in vitro controls, but not different between controls and our ex vivo 
samples included the flagellar components known to show antigenic variation (gene set 
21) (61).

Pathway enrichment analysis of the genes with an average expression more than 
fourfold higher in the in vivo samples compared to the ex vivo samples (Table S7) 
found one pathway: biosynthesis of alginic acid (11.5-fold enrichment with an FDR-cor­
rected P-value of 2.09E−04). We speculate that the common mucA mutations (62) in P. 
aeruginosa CF isolates that were likely present in at least some of the in vivo samples 
led to higher levels of alginate biosynthesis genes. Genes associated with O-antigen 
biosynthesis were also among the most differentially expressed between the in vivo and 
ex vivo samples (Table S7). As for type IV pili, there were differences in mRNA levels for 
genes encoding the O-antigen across the in vivo samples relative to the ex vivo samples. 
P. aeruginosa has at least 20 different O-antigen types and different genes encode the 
different O-antigens (63). Based on expression level, it appears that human sputum 
samples EM30 and EM60B have O-antigen types similar to those found in strain PAO1; 
others likely would not be detected in data based on read mapping to the PAO1 genome. 
Lastly, the in vivo samples and control samples in (43) that differed from the ex vivo 
and control samples in this study included mexS which is consistent with previously 
described differences between PAO1 strains used in different labs (64). Together these 
data highlight similarities between in in vivo and ex vivo conditions and considerations 
that may aid in the comparison of in vivo and in vitro samples.

DISCUSSION

The results outlined in this manuscript establish significant differences in the transcrip­
tomic profile of P. aeruginosa incubated in real CF sputum compared to SCFM2. Among 
the transcriptional features (genes, functional terms, and correlated gene sets) most 
differentially active in real CF sputum are several related to metal acquisition. This finding 
recapitulates the results of prior studies indicating that P. aeruginosa experiences a metal 
restriction response in the CF lungs (31–34). A key takeaway of this study is that the use 
of SCFM2 may obscure certain aspects of P. aeruginosa biology that are relevant to its 
existence and persistence in the CF lung. To address differences between SCFM2 and 
CF sputum inducing the expression of particular genes, researchers may amend their 
medium with certain factors (for example, the introduction of calprotectin to induce a 
metal restriction response), choose a different variety of artificial medium (65, 66), or 
make use of an ex vivo sputum model such as that described in this study. The last 
approach would be ideal to recapitulate the conditions of the CF lung environment 
though if sputum samples from donors are not available then the other approaches 
would be suitable alternatives. In fact, a recent publication found that addition of 
calprotectin to SCFM2 (a variant of artificial sputum medium) adjusted the expression 
of genes to represent the P. aeruginosa transcriptome more accurately during active 
infection. This included zinc responsive genes, which were found to be relatively poorly 
expressed in SCFM2 (43).

The use of common laboratory strain PAO1 to identify differences in induced gene 
expression between SCFM2 and real CF sputum is a strength of this study in that it 
allows for the effects of the media to be understood directly. Differences in endogenous 
strains in CF sputum (e.g., the gain or loss of certain genes) may obscure the effects 
of the sputum environment. For example, clinical isolates from the same CF donor can 
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have genetic differences that lead to a “substantial reprogramming of transcriptional 
networks” that entail reduced pyoverdine production and increased antibiotic resistance, 
among other changes (67). Thus, studies that explore the impact of a common ex vivo 
model on the transcriptional profile of different clinical isolates are also useful and 
complementary to this present study (68).

We also recommend, based on the findings of this study, that CF researchers consider 
patient variability when constructing and interpreting the results of laboratory models. 
The expression of metal restriction gene sets, and other gene sets, can vary considerably 
between different subgroups of patients. As a case in point, we identified three sputum 
samples (Spu124, Spu204, Spu239) in this study that were quite distinct in terms of 
the P. aeruginosa transcriptional profile they induced, with markedly reduced average 
expression of gene sets related to the tricarboxylic acid cycle (gene set 5), type-IV pilus 
dependent motility (gene set 17), and flagellar motility (gene set 21), among other 
differences. The average expression of the metal restriction gene sets was also slightly 
lower in these three samples than most of the other sputum samples (Fig. 3). There 
would be value in designing specific formulations of SCFM2—with different levels of 
various biological factors—that can accurately model different subgroups in the CF 
population. The model system discussed in this study would be useful for designing 
such formulations. To the system of PAO1 incubated in SCFM2, biological factors could 
be added in varying quantities until the gene expression profile closely resembles the 
profile that we observed for the different subgroups of CF sputum samples. Future 
studies with additional CF donors may identify new subgroups.

The approaches outlined here advance our ability to mimic CF conditions in vivo, 
but the general approach can also be used to improve our understanding of P. aeru­
ginosa biology. By identifying correlated gene sets operative in CF sputum, we are 
striving toward a larger goal - that is, identifying external biological factors (metals, 
metabolites, etc.) that influence P. aeruginosa gene expression in different environments, 
characterizing the sets of genes that are influenced by these factors, and understanding 
the phenotypic relevance of these gene sets. In this study, we identified metal restric­
tion gene sets that are correlated in their expression across the CF sputum samples—
meaning that in certain samples the genes are more active as a whole, and in other 
samples, they are as a whole less active. We showed that the constituent genes are 
significantly better expressed in CF sputum than in SCFM2. Finally, we showed that the 
expression of these genes was driven by exposure to metals in a coordinated fashion: 
when a mixture of metals was added to the CF sputum samples, the metal restriction 
gene sets were repressed consistently across each sample, and all individual genes in 
these gene sets were significantly repressed.

Correlating gene sets with clinical parameters like FEV1 enabled us to gain insight 
into how host and pathogen phenotypes are intertwined. In this study there was a 
negative, though non-significant correlation between metal restriction gene set activity 
and patient FEV1. Other studies with increased power might find a stronger relationship 
between metal restriction gene set activity and FEV1 or may identify other gene sets 
whose activity is negatively associated with FEV1. Though even a strong correlation 
between gene set activity and FEV1 does not prove that the activity of a gene set is 
driving differences in clinical symptoms between patients, additional experimentation 
in cell culture or animal models could establish such a causal relationship between 
gene set activity and host phenotype. For example, researchers may manipulate the 
activity of a gene set, inducing or repressing the expression of its genes in a coordinated 
manner (as we repressed the metal restriction gene sets in this study by the addition 
of the metal mixture), and observe the consequences for the broader system. The 
challenge of this approach is that the factor used to induce or repress the gene set 
may also influence the host, so researchers must be careful to account for these effects. 
In laboratory experiments, it may be possible for P. aeruginosa to be pre-treated with the 
induction/repression factor in a separate culture before being added to cells or animal 
models.
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Ultimately, the identification of gene sets and their driving factors may provide a new 
roadmap for clinical intervention. If researchers establish that a given gene set influences 
clinical symptoms, they can try to modulate its expression—either by targeting specific 
genes in the gene set or enhancing or depleting the biological factors that drive its 
expression. This principle can be applied to bacterial cells in the context of bacterial 
infection. In fact, several studies have cited the synergistic effects of combining metal 
chelating agents with antibiotics to improve killing of P. aeruginosa (69–71). The principle 
can also be applied to human cells—modulating the activity of correlated gene sets in 
individual cell types that are associated with disease symptoms. It may even apply to 
the microbiome. Researchers can catalog the metatranscriptomic programs operating in 
a coordinated fashion in the microbiome, determine their driving biological factors, and 
attempt to modulate their activity in a way that is beneficial for the host. It is interesting 
to note that researchers have compared metagenomic and metatranscriptomic data 
from CF sputum samples to healthy saliva samples from the Human Microbiome Project 
and identified various functional terms (KEGG) that are relatively active in CF sputum—
including nucleotide metabolism, biosynthesis of secondary metabolites, and folate 
(vitamin B) biosynthesis. They also identified a relatively high abundance of siderophore 
transporter genes in the CF samples (72). Further identification and analysis of gene sets 
that are correlated in their abundance (metagenomic data) or expression (metatranscrip­
tomic data) across samples may help identify driving factors and clinical ramifications of 
gene expression in the CF microbiome.

Bioinformatics tools are a major asset for advancing the research projects just 
outlined, specifically the development of machine-learning models that identify 
correlated gene sets across large collections of published samples. This study benefi-
ted greatly from the use of ADAGE, which allowed us to identify gene sets that were 
operative not only in our relatively small collection of CF sputum samples, but also 
across a wide variety of P. aeruginosa samples encompassing many different conditions 
(56, 57). The use of ADAGE gave us greater confidence that the gene sets we identified 
were legitimate biological programs and not an artifact of this individual study. Similar 
models should be developed for other pathogens, of the lung, gut, and other organs, 
for CF and other diseases. Furthermore, the construction of compendia that identify 
and characterize all gene expression data sets for pathogens relevant to CF (and other 
diseases) are also useful in laying the grounds for future model development (73–75).

This study does have several limitations that fellow researchers should consider. From 
a biological perspective, it is possible that certain nutrients which are available to P. 
aeruginosa in vivo are not present in the ex vivo model. Because PAO1 is spiked-in to 
expectorated sputum ex vivo, certain nutrients may have been consumed completely by 
the host or native microbial cells prior to spike-in and are therefore not available to PAO1. 
In contrast, P. aeruginosa in vivo may have access to these nutrients before they are fully 
consumed, and its transcriptional profile may look different as a consequence. Future 
identification of these consumed nutrients that are relevant in vivo would allow for the 
spike-in model (and other laboratory models) to be amended with these factors, which 
would potentially improve model accuracy.

In terms of the analysis approach, our differential gene expression analysis of PAO1 
incubated in CF sputum vs SCFM2 identified many differentially expressed genes, slightly 
more than half of all genes detected by RNA sequencing. Differential gene expression 
software such as edgeR assume that most genes are not differentially expressed, and 
when this assumption does not hold, edgeR may identify an increased number of 
negative results, estimate dispersion incorrectly, and make other statistical errors. We 
have mitigated this issue in some respects by analyzing the gene expression data from 
multiple angles (differential gene expression, pathway activation analysis that does not 
depend on P value cutoffs, analysis of correlated gene sets), but further confirmation of 
the transcriptomic patterns observed in this study in future research would help provide 
additional validation. Another potential limitation is the approach we took to define 
correlated gene sets. We chose to define gene sets using the top 10-most correlated 
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genes in ADAGE. While a reasonable approach, an alternative approach would be to 
define gene sets based on a specific edge weight cutoff in ADAGE (edge weight signifies 
the extent of correlation). Thus, gene sets could have a variable number of constituent 
correlated genes. This might identify additional correlated genes of interest.

Applications akin to ADAGE are also useful for the analysis of gene expression in 
human cells. HumanBase, for example, provides an atlas of functional gene networks 
that operate in a tissue-specific manner, built in large part by analysis of gene co-expres­
sion across public data sets in the gene expression omnibus (GEO) (76–78). This is an 
invaluable tool for researchers who want to understand how networks of genes are 
contributing to disease on the tissue or even the individual cell level. The HumanBase 
system is a suite of accessible bioinformatics tools maintained by the FlatIron Institute. 
Like ADAGE, its functional gene networks are available to researchers with any level of 
computational experience through a web application. This accessible approach is ideal 
for stimulating additional experiments conducted by wet-bench researchers.

MATERIALS AND METHODS

Sputum samples

Sputum samples were obtained from the DartCF Translational Research Core Specimen 
Bank in accordance with Dartmouth Health IRB-approved protocol 28835. Sputum had 
been stored in 0.5–1.5 mL aliquots at −80°C immediately after collection; the amount 
of time samples was stored frozen varied. Each sample was thawed once, homogenized 
through an 18 gauge needle, and stored in 100 µL aliquots at −80°C until ex vivo 
transcriptome analyses were performed.

P. aeruginosa transcriptome analysis in ex vivo sputum

P. aeruginosa PAO1 (DH294) was grown overnight in 5 mL LB (lysogeny broth) on a roller 
drum at 37°C for 16 h (79). From this culture, 1 mL was used to inoculate 50 mL M63 0.2% 
glucose amended with metals (3 µM ammonium ferrous sulfate, 1.5 µM zinc sulfate, and 
0.1 µM manganese chloride). The metal concentrations were chosen empirically so that 
they did not suppress siderophore and zincophore-encoding gene expression and also 
fell within an order of magnitude of the lowest observed respective Fe2+, Zn2+, and Mn2+ 

concentrations observed in the sputum samples (see Table S6 of metal concentrations). 
Cells were spun down and washed twice in dH20 and re-suspended in 500 µL dH20. Ten 
microliters of the cell suspension was added to 100 µL aliquots of (i) sputum, (ii) sputum 
amended with 10 µL dH20 or metals solution (300 µM ammonium ferrous sulfate, 150 µM 
zinc sulfate, and 10 µM manganese chloride)—these metal concentrations were also 
chosen empirically to suppress siderophore and zincophore-encoding gene expression 
and fall within an order of magnitude of the highest observed respective Fe2+, Zn2+, and 
Mn2+ concentrations observed in the sputum samples (see Table S6 of metal concentra­
tions), (iii) SCFM2 (42), or (iv) M63* in 1.5 mL Eppendorf tubes. Tubes were taped on 
their side with the lids open, placed in a humidity chamber, and incubated at 37°C with 
shaking at 250 RPM for 3 h. Sputum was not sterilized prior to spike-in and total RNA, 
from both previously-existing and spiked-in organisms, was extracted using the Zymo 
Direct-zol RNA extraction kit. On-column DNase I treatment (cat# R2061) and small RNA 
fragments (including degraded mRNA) were separated into a separate fraction using the 
Zymo RNA Clean and Concentrator kit (cat# R1017). The comparator cultures in SCFM2 or 
M63 were similarly incubated. This manuscript outlines the gene expression differences 
between PAO1 incubated in SCFM2 compared to sputum (metal-untreated or metal-
treated). Though not emphasized in the manuscript, the aforementioned M63 samples 
are included in the raw RNA-seq count data, accessible through the Github repository 
associated with this publication, and available for re-analysis by future researchers who 
want to evaluate differences in P. aeruginosa gene expression when incubated in M63 
and the other media types investigated in this study.
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RNA sequencing

RNA-seq was performed through the Microbial Genome Sequencing Center (MIGS) and 
processed via a Salmon v1.5.2-based pipeline on the Dartmouth College HPC cluster. 
For all samples, the percentage of reads that mapped to P. aeruginosa (vs human and 
other microbial species) was determined and is shown in Fig. S7. Specifically, reads were 
mapped to the PAO1 reference genome. Although the amount of PAO1 spiked into the 
sputum samples was relatively high, a small proportion of the PAO1-mapping reads may 
have derived from native isolates in the expectorated sputum that are genetically similar 
to PAO1. Even so, the normalization of raw count data as described in the results ensured 
that any differences in library size between samples due to varying amounts of native 
isolates in the samples were accounted for. Furthermore, whether a PAO1-mapping read 
came from PAO1 itself or a native isolate, the essential question of what genes are 
expressed in sputum is still answered.

Differential gene expression and pathway analysis

To identify genes that are differentially expressed in CF spike-in sputum samples exposed 
to metal treatment vs samples not exposed to metals, the R package edgeR was used 
(v 3.40.2) (46). The edgeR package was also used to identify differentially expressed 
genes in the spike-in samples compared to SCFM2. In both cases, the ESKAPE Act PLUS 
web application was used to determine significantly activated or repressed GO terms 
associated with the differentially expressed genes (47). This activation analysis involves a 
binomial test, where the significance of pathway activation is dependent on the number 
of genes in the pathway with a positive (or negative) fold change, not on the magnitude 
of the fold change or P value calculated by edgeR. The second section of the results 
provides further rationale for the use of this approach. The ESKAPE Act PLUS web 
application is available at the following link: http://scangeo.dartmouth.edu/ESKAPE/. 
Pathway enrichment analysis for genes differentially expressed between in vivo genes 
and controls was performed at geneontology.org/docs/go-enrichment-analysis.

Key gene identification and gene set construction

Gene sets were constructed as outlined in the results. First, genes that were highly 
abundant and differentially expressed in the spike-in sputum samples compared to 
SCFM2, or highly abundant in their expression across the spike-in sputum samples, were 
determined. The most differentially active genes in CF sputum relative to SCFM2 were 
determined by filtering the differential gene expression results (PAO1 in CF sputum 
vs SCFM2) for genes with positive fold change, then selecting those with fold change 
and logCPM values both in the top 10%, then filtering further for genes with an 
FDR-corrected P-value less than 0.05. Fold change references the extent of differential 
expression between two experimental conditions, while logCPM is a measure of how 
abundantly expressed a gene is on average across samples. The genes in the second 
category constitute the top 50 most abundantly expressed genes on average across all 
the spike-in sputum samples, after normalizing gene expression counts across samples 
by library size. The identification of key genes that meet these different criteria are 
outlined in Table S2.

Ultimately, genes in both categories were consolidated (12 genes were included in 
both categories—PA2402, PA3126, PA2424, PA2399, PA5556, PA2400, PA4263, PA4568, 
PA4432, PA4470, PA4741, PA4262—and there were 35 unique key genes in total 
presented in Table 2). The list of key genes presented in Table 2 excludes basic 
maintenance genes, which were identified by their associated GO biological process 
terms. Specifically, we removed genes solely associated with any of the following GO 
BP terms related to transcription [DNA-templated transcription (GO:0006351), DNA-
templated transcription initiation (GO:0006352), regulation of DNA-templated tran­
scription (GO:0006355)], translation [translation (GO:0006412), translational elongation 
(GO:0006414), cytoplasmic translation (GO:0002181), negative regulation of translation 
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(GO:0017148), tRNA N1-guanine methylation (GO:0002939), ribosomal small subu­
nit biogenesis (GO:0042274), ribosomal large subunit assembly (GO:0000027), rRNA 
processing (GO:0006364), ribosome biogenesis (GO:0042254), ribosome disassembly 
(GO:0032790)], ATP synthesis [proton motive force-driven ATP synthesis (GO:0015986), 
proton motive force-driven plasma membrane ATP synthesis (GO:0042777)], and cell 
division [cell cycle (GO:0007049), cell division (GO:0051301), negative regulation of cell 
division (GO:0051782)]

From each of these key genes, the web tool ADAGE (56) was used to construct sets of 
10 genes in total (including the key gene) that are highly correlated in their expression 
with the key genes across the compendium of P. aeruginosa samples that ADAGE was 
based on. ADAGE is available at the following link: https://adage.greenelab.com/.

Subsequently, the constructed gene sets were consolidated—gene sets with five or 
more of the same genes were merged—then pruned, so that they only contained genes 
which were well correlated in their expression across the spike-in sputum samples. For 
a constituent gene to be considered well correlated enough to remain in the gene set, 
its Pearson correlation coefficient (r) with the key gene had to be greater than 0.5. The 
final list of consolidated, pruned gene sets is what appears in Table 3. The several steps of 
consolidating and pruning gene sets are recorded in Table S2.

As a final measure to strengthen our confidence that the gene sets are broadly 
relevant biological signatures, they were further checked for internal correlation across 
an independent compendium of 890 PAO1 gene expression samples (80). These samples 
were processed as described in the associated publications (44, 80). For every one of the 
24 gene sets in Table 3, all constituent genes remained positively correlated (Pearson 
correlation coefficient > 0) in the independent compendium (Fig. S8).

Linear regression analysis

To determine whether there were any significant associations between the average 
expression of gene sets and the metadata gathered for the donors, including metal 
concentrations in sputum, linear regression was performed in R using the built-in linear 
model function “lm().” For each combination of gene set and clinical parameter, a linear 
regression model was constructed (e.g., Y ~ X, where Y = average gene set expression 
and X = potentiator usage yes/no). P values and R² values are based on these simple 
models. Because we tested for the significant association of the 24 different gene sets 
with each clinical parameter, the p.adjust function was used to adjust any P values 
reported in the manuscript (method = FDR, n = 24 P values).

Analysis code and figure production

All code was created using the RStudio integrated development environment (IDE) (81). 
The package edgeR was used throughout the manuscript for differential gene expression 
analysis (82). A number of additional outside packages were used to generate figures 
for the manuscript. The gplots package (v 3.1.3) was used to generate the heat map in 
Fig. 3A (83). The ggplot2 package (v 3.4.0) and ggpubr package (v 0.5.0) were used to 
generate the paired boxplots in Fig. 4 and Fig. S2, with a theme from the ggprism (v 
1.0.4) package also used to shape figure appearance (84–86). The PCA plots in Fig. 1B 
and 2A were created with the packages factoextra (v 1.0.7) and FactoMineR (v 2.6) (87, 
88). The Venn Diagram in Fig. 1A was created with the Venn Diagram (v1.7.3) package 
(89). The R package dplyr (v 1.0.10) was used to structure data and facilitate analysis (90). 
The heatmaps in figure panels 2C, 2D, 3B, and 3C were created using the R packages 
ComplexHeatmap (v2.14.0) and circlize (v0.4.15) (91–93). The corrplot package (v 0.92) 
was used to produce figure panel 5A (94). The analysis code and data inputs are provided 
in the associated Github Repository, which was archived in Zenodo prior to submission: 
https://zenodo.org/badge/latestdoi/670576663
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