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SUMMARY

Cross-experiment comparisons in public data
compendia are challenged by unmatched conditions
and technical noise. The ADAGE method, which per-
forms unsupervised integration with denoising au-
toencoder neural networks, can identify biological
patterns, but because ADAGE models, like many
neural networks, are over-parameterized, different
ADAGE models perform equally well. To enhance
model robustness and better build signatures
consistent with biological pathways, we developed
an ensemble ADAGE (eADAGE) that integrated sta-
ble signatures across models. We applied eADAGE
to a compendium of Pseudomonas aeruginosa
gene expression profiling experiments performed in
78 media. eADAGE revealed a phosphate starvation
response controlled by PhoB inmedia withmoderate
phosphate and predicted that a second stimulus pro-
vided by the sensor kinase, KinB, is required for this
PhoB activation. We validated this relationship using
both targeted and unbiased genetic approaches.
eADAGE, which captures stable biological patterns,
enables cross-experiment comparisons that can
highlight measured but undiscovered relationships.

INTRODUCTION

Available gene expression data are outstripping our knowledge

about the organisms that we are measuring. Ideally each organ-

ism’s data reveals the principles underlying gene regulation and

consequent pathway activity changes in every condition in which

gene expression is measured. Extracting this information re-

quires new algorithms, but many commonly used algorithms

are supervised. These algorithms require curated pathway

knowledge to work effectively, and in many species such re-

sources are biased in various ways (Gillis and Pavlidis, 2013;
Cell Systems 5, 63–71
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Greene and Troyanskaya, 2012; Schnoes et al., 2013). Annota-

tion transfer can help, but such function assignments remain

challenging for many biological processes (Jiang et al., 2016).

An unsupervised method that does not rely on annotation trans-

fer would bypass the challenges of both annotation transfer and

biased knowledge.

Along with our wealth of data, abundant computational re-

sources can power deep unsupervised applications of neural

networks, which are powerful methods for unsupervised feature

learning (Bengio et al., 2013). In a neural network, input variables

are provided to one or more layers of ‘‘neurons’’ (also called no-

des), which turns on in accordance with an activation function.

The network is trained and the edge weights between nodes

are adjusted by grading the quality of the output. Denoising au-

toencoders (DAs), a type of unsupervised neural network, are

trained to remove noise that is intentionally added to the input

data (Vincent et al., 2008). Masking noise, in which a fraction of

the inputs are set to zero, is commonly used (Vincent et al.,

2010), and successful DAs must learn the dependency structure

between the input variables. Adding noise helps a DA to learn

features that are robust to partial corruption of input data. This

approach is particularly suitable for gene expression data (Tan

et al., 2015). The sigmoid activation function produces features

that tend to be on or off, which helps to describe biological pro-

cesses, e.g., transcription factor activation, with threshold ef-

fects. Also, the algorithm is robust to noise. We previously

observed that a one-layer DA-based method, ADAGE, was

more robust than linear approaches such as independent

component analysis (ICA) or principal component analysis

(PCA) in the context of public data, which employ heterogeneous

experimental designs, lack shared controls, and provide limited

metadata (Tan et al., 2016).

Neural networks have many edge weights that must be fitted

during training. Different DAs could reconstruct given gene

expression datasets equally well. The objective functions of neu-

ral networks are non-convex and trained through stochastic

gradient descent. Each trained model represents a local mini-

mum. Yu (2013) recently emphasized the importance of patterns

that are stable across statistical models in the process of dis-

covery. While run-to-run variability obscures some biological
, July 26, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 63
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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features within individual models, stable patterns across neural

networks may resolve biological pathways. To directly target

stability, we introduce an unsupervised modeling procedure

inspired by consensus clustering (Monti et al., 2003). Consensus

clustering has become a standard part of clustering applications

for biological datasets. Our approach builds an ensemble neural

network that captures stable features and improves model

robustness.

To apply the neural network approach to compendium-wide

analyses, we sought to create a comprehensive model in which

biological pathways were learned from gene expression data.

We adapted ADAGE (Tan et al., 2016) to capture pathways

more specifically by increasing the number of nodes (model

size) that reflect potential pathways from 50 to 300, a size that

our analyses indicate the current public data compendium can

support. We then built its ensemble version (eADAGE) and

compared it with ADAGE, PCA, and ICA. While it is impossible

to specify a priori the number of true biological pathways

that exhibit gene expression signatures, we observed that

eADAGEmodels produced gene expression signatures that cor-

responded to more biological pathways, indicating that this

method more effectively identifies biological signatures from

noisy data. While ADAGE models reveal biological features per-

turbed within an experiment, the more robust eADAGE models

also enable analyses that cut across an organism’s gene expres-

sion compendium.

To assess the utility of the eADAGEmodel, we applied it to the

analysis of the Pseudomonas aeruginosa gene expression com-

pendium which included 1,051 samples grown in 78 distinct me-

dium conditions, 128 distinct strains and isolates, and dozens of

different environmental parameters. After grouping samples

by medium type, we searched for eADAGE-defined signatures

that differed between medium types. This cross-compendium

analysis identified five media that elicited a response to low

phosphate mediated by the transcriptional regulator PhoB.

While PhoB is known to respond to low phosphate through its

interaction with PhoR in low concentrations (Wanner and Chang,

1987), our analyses indicated that PhoB is also active at moder-

ate phosphate concentrations in a KinB-dependent manner, and

molecular analyses of P. aeruginosa confirmed this prediction.

Analysis of a collection of P. aeruginosa mutants defective in ki-

nases validated the specificity of the KinB-PhoB relationship.

In summary, eADAGE more precisely and robustly captures

biological processes and pathways from gene expression data

than other unsupervised approaches. The signatures learned
64 Cell Systems 5, 63–71, July 26, 2017
by eADAGE support functional gene set analyses without

manual pathway annotation. The signatures are robust enough

to enable biologists to identify not only differentially active signa-

tures within one experiment, but also cross-compendium pat-

terns that reveal undiscovered regulatory mechanisms captured

within existing public data.

RESULTS

eADAGE: Ensemble Modeling Improves the Model
Breadth, Depth, and Robustness
ADAGE is a neural network model. Each gene is connected to

each node through a weighted edge (Figure 1A). We define a

gene signature learned by an ADAGE model as a set of genes

that contributes the highest positive or highest negative weights

to a specific node (Figure 1B, see STAR Methods for details).

Therefore, one node results in two gene signatures, one on

each high-weight side. The positive and negative signatures

derived from the same node do not necessarily compose

inversely regulated processes (Figure S1), so we use them

independently.

ADAGE models of the same size capture different pathways

because their training processes are sensitive to weight initializa-

tion. eADAGE, in which we built an ensemble version of individ-

ual ADAGE models, took advantage of this variation to enhance

model robustness. Each eADAGE model integrated nodes from

100 individual ADAGE models (Figure 2A). To unite nodes, we

applied consensus clustering on nodes’ weight vectors because

the weight vector captures both the genes that contribute to a

node and their magnitude. Our previous ADAGE analyses

showed that genes contributing high weights characterized

each node’s biological significance, so we designed a weighted

Pearson correlation to incorporate gene weights in building

eADAGE models. We compared eADAGE with two baseline

methods: ADAGE models and corADAGE, which combined

nodes with an unweighted Pearson correlation. For direct com-

parison, the model sizes of ADAGE, eADAGE, and corADAGE

were all fixed to 300 nodes, which we found to be appropriate

for the current P. aeruginosa expression compendium through

both data-driven and knowledge-driven heuristics (see STAR

Methods and Figure S2).

While ADAGE models are constructed without the use of

curated information such as KEGG (Kanehisa and Goto, 2000)

and gene ontology (GO) (Ashburner et al., 2000), we evaluate

models by the extent to which they cover the pathways and
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Figure 2. The Construction and Performance of eADAGE

(A) eADAGE construction workflow. One hundred individual ADAGE models were built on the input dataset. Nodes from all models were extracted and clustered

based on the similarities in their weight vectors. Nodes from different models were rearranged by their clustering assignments. Weight vectors from nodes in the

same cluster were averaged, thus becoming the final weight vector of a newly constructed node in an eADAGE model.

(B) KEGG pathway coverage comparison between ADAGE, corADAGE, and eADAGE.

(C) The enrichment significance of three example KEGG pathways in ADAGE models with different sizes and eADAGE models. Gray dotted line indicates FDR

q value of 0.05.

(D) The distribution of KEGG pathway coverage rate of ADAGE and eADAGE models.

(E) Comparison among PCA, ICA, and eADAGE in KEGG pathway coverage at different significance levels.

See also Figure S3.
processes defined in these resources to see how they capture

existing biology. For each method, we determined the number

of KEGG pathways significantly associated with at least

one gene signature in a model, referred to as KEGG coverage.

eADAGE exhibited greater KEGG coverage than other methods

(Figure 2B). Both corADAGE and eADAGE covered significantly

more KEGG pathways than ADAGE (t test p value of 1.04 3

10�6 between corADAGE [n = 10] and ADAGE [n = 1,000], and

t test p value of 1.41 3 10�6 between eADAGE [n = 10] and

ADAGE [n = 1,000]). Moreover, eADAGE models covered, on

average, 10 more pathways than corADAGE (t test p value of

1.99 3 10�3, n = 10 for both groups). Genes that participate in
multiple pathways can influence pathway enrichment analysis,

a factor termed pathway crosstalk (Donato et al., 2013). To con-

trol for this, we performed crosstalk correction (Donato et al.,

2013). After correction, the number of covered pathways drop-

ped by approximately half (Figure S3A), but eADAGE still

covered significantly more pathways than corADAGE (t test

p value of 0.02) and ADAGE (t test p value of 1.29 3 10�5). We

subsequently evaluated each method’s coverage of GO biolog-

ical processes (GO-BP) and found consistent results (Fig-

ure S3B). eADAGE integrated multiple models to more broadly

capture pathway signals embedded in diverse gene expression

compendia.
Cell Systems 5, 63–71, July 26, 2017 65



We next evaluated how specifically and completely signatures

learned by the models capture known biology. We use each

gene signature’s false discovery rate (FDR) corrected p value

for enrichment of a KEGG/GO term as a combined measure for

both the sensitivity and specificity. If a pathway was significantly

associated with multiple gene signatures in a model, we only

considered its most significant association. We found that

71% of KEGG and 79% of GO-BP terms were more significantly

enriched (had lowermedian p values) in corADAGEmodels when

comparedwith individual ADAGEmodels. This increased to 87%

for KEGG and 81% for GO-BP terms in eADAGE models. We

also compared eADAGE and corADAGE by this measure and

observed that 74% of KEGG and 61% of GO-BP terms were

more significantly enriched in eADAGE. We have found that

different pathways were best captured at different model sizes

(Figure 2C). We next compared the 300-node eADAGE model

with ADAGE models with different numbers of nodes. Although

the 300-node eADAGE models were constructed only from

300-node ADAGE models, we found that 69% of KEGG and

69% of GO-BP terms were more significantly enriched (i.e.,

lower median p values) in eADAGE models than in ADAGE

models of any size. Three example pathways that are best

captured either when model size is small, large, or in the middle

are all well captured in the 300-node eADAGEmodel (Figure 2C).

These results demonstrate that eADAGE’s ensemble modeling

procedure captures consistent signals across models and filters

out noise.

We designed eADAGE to provide a more robust analysis

framework than ADAGE. To assess this, we examined the per-

centage of models that covered each pathway (coverage rate)

between ADAGE and eADAGE. Most KEGG pathways were

covered by less than half of the ADAGE models but more than

half of eADAGE models (Figure 2D), suggesting that eADAGE

models were more robust than ADAGE models. Subsequent

evaluations of GO-BP were consistent with this finding (Fig-

ure S3C). We excluded KEGG/GO terms always covered

by both ADAGE and eADAGE models and observed that 69%

of the remaining KEGG and 71% of the remaining GO terms

were covered more frequently by eADAGE than ADAGE. This

suggests that their associations are stabilized via ensemble

construction.

PCA and ICA have been used to extract biological features

and build functional gene sets (Alter et al., 2000; Chen et al.,

2008; Engreitz et al., 2010; Frigyesi et al., 2006; Gong et al.,

2007; Lutter et al., 2009; Ma and Kosorok, 2009; Raychaudhuri

et al., 2000; Roden et al., 2006). We performed PCA and gener-

ated multiple ICA models from the same P. aeruginosa expres-

sion compendium and evaluated their KEGG/GO term coverage

using the same procedures for eADAGE. eADAGE substantially

and significantly outperforms PCA (Figure 2E). Between

eADAGE and ICA, we observed that eADAGE represented

KEGG/GO terms more precisely. Specifically, among terms

significantly enriched in either approach, 68% KEGG and 71%

GO terms exhibited more significant enrichment in eADAGE.

Increasing the significance threshold for pathway coverage

demonstrates the advantage of eADAGE (Figures 2E and S3D).

Pathway databases provide a means to compare unsuper-

vised methods for signature discovery. Not all pathways will be

regulated at the transcriptional level, but those that are may be
66 Cell Systems 5, 63–71, July 26, 2017
extracted from gene expression data. The unsupervised

eADAGE method revealed signatures that corresponded to

P. aeruginosa KEGG/GO terms better than PCA, ICA, ADAGE,

and corADAGE. It had higher pathway coverage (breadth), and

covered pathways more specifically (depth) and more consis-

tently (robustness) than existing methods.

Elucidating Functional Signatures that Are Indicative of
Growth Medium
For biological evaluation, we built a 300-node eADAGE model.

We calculated signature activities in each sample. A high activity

indicates that most genes in the signature are highly expressed

in the sample.

Analysis of differentially expressed genes is widely used to

analyze single experiments, but crosscutting signatures are

required to reveal general response patterns from large-

scale compendia. Signature-based analyses can suggest

mechanisms such as crosstalk and novel regulatory networks,

but these signatures must be robust and comprehensive. By

capturing biological pathways more completely and robustly,

eADAGE enables the analysis of signatures, including those

that do not correspond to any existing pathway, across the entire

compendium of P. aeruginosa.

Gene expression experiments have been used to investigate

diverse questions about P. aeruginosa biology, and these exper-

iments have used different media to emphasize different pheno-

types. Manual annotation showed that 78 base media were used

across the gene expression compendium (Table S1). While the

compendium contains 125 different experiments, in only two of

them did investigators use multiple base media. Other than Lu-

ria-Bertani (LB), which is used in 43.6% (458/1,051) of the sam-

ples, each medium is only represented by a handful of samples.

To provide an example of cross-experiment analysis, we

examined signature activity across the six experiments in

M9 minimal medium (Miller, 1972) with six different carbon sour-

ces. Node147pos was highly active in phosphatidylcholine (Fig-

ure 3A). This node was significantly enriched for the GO terms

choline catabolic process (FDR q value of 2.9 3 10�11) and

glycine betaine catabolic process (FDR q value of 4.6 3 10�20).

Of all signatures, it had the largest overlap with the regulon of

GbdR, the choline-responsive transcription factor (Hampel

et al., 2014) (FDR q value of 2.53 10�47), suggesting that choline

catabolism is active in this medium. Consistent with this, phos-

phatidylcholine, but not palmitate, citrate, or glucose, is a choline

source for P. aeruginosa (Wargo et al., 2009, 2011). Importantly,

while Node147pos was differentially active within a single exper-

iment containing samples in phosphatidylcholine and palmitate

(E-GEOD-7704), it was also identifiable in comparisons of sam-

ples grown in M9 medium with different carbon sources in

different experiments. This illustrates how medium-specific sig-

natures can be identified without experiments designed to

directly test the hypothesis that a specific medium component

affects gene expression.

Distinct Aspects of the Response to Low Phosphate Are
Captured among the Most Active Signatures
To broadly examine signatures across all media, we calculated a

medium activation score for each signature-medium combina-

tion. This score reflected how a signature’s activity in a medium
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Figure 3. eADAGE Signatures with Medium-Specific Patterns

(A) Activity of Node147pos in M9-based media.

(B) Activity of Node164pos in all media.

(C) Expression heatmaps of genes in Node164pos across samples in NGM + <0.1 mM phosphate, peptone, King’s A, and PIA media. Heatmap color range is

determined by the Z-scored gene expression of all samples in the compendium.

See also Figure S4 and Table S3.
differed from its activity in all other samples (Figure S4, see STAR

Methods for details). Table S2 lists signatures with activation

scores in a specific medium above a stringent threshold. A

signature could be active in multiple media (Figure S4), so we

averaged their activation scores when this occurred. Table S3

lists signatures that are active in a group of media with detailed

annotation for the top five signatures.

The two signatures with the highest pan-media activation

scores were Node164pos and Node108neg (Table S3).

We examined their underlying activities across all media

(Node164pos is shown Figure 3B), and found that both were

highly active in King’s A, Peptone, and nematode growth me-

dium (NGM) + <0.1 mM phosphate (NGMlowP), but not in
NGM + 25 mM phosphate (NGMhighP). The activity differences

between NGMlowP and NGMhighP suggested that these sig-

natures respond to phosphate levels. The other two media

(Peptone and King’s A) in which Node164pos had high activity

had low phosphate concentrations (0.4 mM) relative to the

commonly used LB (�4.5 mM) (Bertani, 2004).

KEGG pathway enrichment analysis of Node164pos genes

showed enrichment in phosphate acquisition-related pathways

(Table S3). One Node164pos gene encodes PhoB, a transcrip-

tion factor in the PhoR-PhoB two-component system that

responds to low environmental phosphate in P. aeruginosa (Bie-

lecki et al., 2015; Blus-Kadosh et al., 2013; Santos-Beneit, 2015).

Furthermore, Node164pos is the signature most enriched for a
Cell Systems 5, 63–71, July 26, 2017 67
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Figure 4. PhoA Activity, as Seen by the Colorimetric BCIP Assay in Various Media

(A) PhoA activity, as seen by the blue-colored product of 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) cleavage, is dependent on low phosphate concentra-

tions, phoB, phoR and, in NGM, kinB.

(B) PhoA is active in King’s A, Peptone, and PIA and is dependent on phoB and phoR and, on PIA, kinB at 16 hr.

(C) PhoA is active in King’s A, Peptone, and PIA and is dependent on phoB and, on PIA, kinB after 32 hr.

(D) PhoA activity is dependent on phosphate concentrations <0.6 mM, phoB, phoR and, at 0.5 mM phosphate, kinB on MOPS. Not shown, 0.2 mM mimics

0.1 mM, and 0.7–0.9 mM mimics 1.0 mM. WT, wild-type.
previously defined PhoB regulon (FDR q value of 8.1 3 10�29 in

hypergeometric test).

Expression levels of genes in Node164pos are higher in

Peptone, King’s A, and NGMlowP than in NGMhighP (Figure 3C),

including phoAwhich encodes alkaline phosphatase, an enzyme

whose activity can be monitored using a colorimetric assay.

As expected, PhoA was activated in low phosphate concentra-

tions (Figure 4A). PhoA activity was dependent on PhoB and

the PhoB-activating histidine kinase PhoR, consistent with

published work (Bielecki et al., 2015). Notably, PhoA activity

was evident on King’s A and Peptone (Figure 4B). Although

King’s A and Peptone are not considered to be phosphate-

limited media, these results provide evidence that they induced

PhoB activity as predicted by Node164pos’s signature-medium

relationship.

While Node108neg is not significantly associated with phos-

phate acquisition-related KEGG pathways, it is enriched for the

PhoB regulon (FDR q value of 5.2 3 10�9 in hypergeometric

test, Table S3) and shares over half of its 32 genes with

Node164pos. Six of the seven PhoB-regulated genes present

in Node108neg are also regulated by TctD, a transcriptional

repressor (Bielecki et al., 2015). Node108neg primarily repre-

sents genes that are both PhoB-activated and TctD-repressed.

Subsequent analyses found that Node108neg was the most

differentially active signature between a DtctD strain and the

wild-type in an RNA sequencing experiment (E-GEOD-64056).

Importantly, eADAGE learned this TctD regulon even though

the expression compendium did not contain any samples of

tctD mutants, demonstrating the utility of eADAGE in learning

regulatory programs uncharacterized by KEGG.
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We evaluated whether the PhoB and TctD signals were also

extracted by PCA, ICA, or ADAGE. ICA and ADAGE captured

signatures enriched of the PhoB regulon less than those of

eADAGE (Table S4). PCA captured a strong PhoB signal in its

19th principal component. However, it did not learn the subtler

TctD signal. In summary, the other methods were able to capture

some of this signature but in a manner that was less complete or

failed to separate TctD.

Cross-Compendium Analysis of Node164pos Activity
Reveals a Role for the Histidine Kinase KinB in the
Regulation of PhoB
Interestingly, Node164pos activity exhibited a wide spread in

Pseudomonas isolation agar (PIA), with six samples having

high activities and the other six having low activities (Figure 3B).

All of the samples with low Node164pos activity were from a

study that used a PAO1 kinB::GmR mutant background (Damron

et al., 2012). The PIA-grown samples with high Node164pos ac-

tivity used a PAO1 strain with kinB intact (Damron et al., 2013)

leading us to propose that KinB may be a regulator of PhoB on

PIA. We confirmed that PhoA activity dependents on PhoB,

PhoR, and KinB on PIA medium (Figure 4B) as illustrated by

the fact that a screen of 63 histidine kinase in-frame deletion

mutants (STAR Methods) found that only DphoR and DkinB

had no PhoA activity on PIA, like the phoBmutant. These kinases

appear to regulate PhoB non-redundantly and to different ex-

tents in PIA, as the DphoRmutant regained PhoA activity at later

time points but the DkinB mutant did not (Figure 4C).

Although the phosphate concentration of PIA (0.8mM) is lower

than that of rich media such as LB (�4.5 mM), it is higher than



that of Peptone and King’s A (0.4 mM). Therefore, we tested

whether a moderately low level of phosphate provokes KinB

regulation of PhoA. We found that PhoA activity was evident at

concentrations up to 0.5mMphosphate inMOPS (3-(N-morpho-

lino)propanesulfonic acid) medium in the wild-type, but only at

lower concentrations in the DkinB strain, suggesting that KinB

plays a role at intermediate concentrations (Figure 4D). To our

knowledge, KinB has not been previously implicated in the acti-

vation of PhoB.

In summary, eADAGE effectively extracted biologically mean-

ingful features, accurately indicated their activity in multiple me-

dia spanning numerous independent experiments, and revealed

a novel regulatory mechanism. By summarizing gene-based

expression information into biologically relevant signatures,

eADAGE greatly simplifies analyses that cut across large gene

expression compendia.

DISCUSSION

Our eADAGE algorithm uses an ensemble of ADAGE models to

address model variability due to stochasticity and local minima.

Comparable approaches have also been applied for ICA,

whereby researchers have used the centrotypes in clustering

multiple models as the final model (Himberg et al., 2004). The

ICA centrotype approach for ADAGE corresponds to corADAGE,

and our comparison of eADAGE and corADAGE shows that

eADAGE not only covers more biological pathways but also re-

sults in cleaner representations of biological pathways. This

direct comparison suggests that placing particular emphasis

on the genes most associated with a particular feature may be

a useful property for other unsupervised feature construction al-

gorithms. While our results demonstrate that this ensemble pro-

cess can help improve the biological interpretability of neural

networks, we do not expect it to increase prediction accuracies

in supervised learning problems.

eADAGE revealed patterns that were detectable from a data

compendium containing experiments performed in 78 different

media but that were not necessarily evident in individual exper-

iments. For example, one eADAGE signature revealed media in

which P. aeruginosa had high PhoB activity. PhoB is a global

regulator, and understanding its state can provide insight into

medium-specific phenotypes. King’s A and PIA, on which the

PhoB signature was active, are known to stimulate robust pro-

duction of colorful secondary metabolites (King et al., 1954)

called phenazines. PhoB can also influence phenazine levels

(Jensen et al., 2006). Future studies will reveal whether the low

phosphate levels in these media contribute to this characteristic

phenotype. We expect that other signatures extracted from the

compendium by eADAGE will serve as the basis for additional

work in which the patterns are not only examined but also

validated.

We uncovered a subtle aspect of the phosphate starvation

response that depends on KinB, a histidine kinase not previously

associated with PhoB. Bacterial two-component systems are

often insulated from each other (Podgornaia and Laub, 2013).

Although sensor kinase/response regulator crosstalk has been

hypothesized as a mechanism of explaining the complexity of

signaling networks (Fisher et al., 1995), it is challenging to find

conditions where two kinases are needed for full response regu-
lator activation (Verhamme et al., 2002).We propose that moder-

ate levels of phosphate, like those in PIA, provide a niche for

crosstalk: the activity of PhoR is low enough that the interaction

with KinB is needed for full PhoB activity. Alternatively, KinBmay

influence PhoB activity indirectly by regulating activities that

affect PhoB levels, phosphorylation state, or protein-protein in-

teractions. Since experiments designed to perturb this process

use only high and very low phosphate concentrations, eADAGE

analysis of P. aeruginosa transcriptomic measurements across

experiments in different media was required to reveal this

relationship.

Existing public gene expression data compendia formore than

100 organisms are of sufficient size to support eADAGE models

(Greene et al., 2016). Cross-compendium analyses provide the

opportunity to use existing data to identify regulatory patterns

that are evident across multiple experiments, datasets, and lab-

oratories. To tap this potential, we will require algorithms such

as eADAGE that robustly integrate these diverse datasets in a

manner that is not limited to well-understood aspects of biology.

Furthermore, while public compendia tend to be dominated by

expression data, autoencoders have also been successfully

applied to datasets based on large collections of electronic

health records where they are particularly effective at dealing

with missing data (Beaulieu-Jones et al., 2016; Miotto et al.,

2016; Beaulieu-Jones and Moore, 2017). These features, along

with their unsupervised nature, make DAs a promising approach

for the integration of heterogeneous data types. Ultimately, we

expect unsupervised algorithms to be most helpful when they

lead users to discover new underlying mechanisms, which

require models that are accurate, robust, and interpretable.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Pseudomonas aeruginosa: Strain background: PA14 Rahme et al., 1995 DH122

Pseudomonas aeruginosa: PA14: DphoB::GmR O’Toole lab SMC4162 DH2633

Pseudomonas aeruginosa: PA14: DphoR This paper DH2516

Pseudomonas aeruginosa: PA14: DkinB This paper DH2517

Pseudomonas aeruginosa: PA14: DcheA This paper DH2456

Pseudomonas aeruginosa: PA14: DchpA This paper DH2457

Pseudomonas aeruginosa: PA14: DcreC This paper DH2458

Pseudomonas aeruginosa: PA14: DPA14_0782 This paper DH2459

Pseudomonas aeruginosa: PA14: DbfiS This paper DH2460

Pseudomonas aeruginosa: PA14: DbphP This paper DH2461

Pseudomonas aeruginosa: PA14: DPA14_10770 This paper DH2462

Pseudomonas aeruginosa: PA14: DPA14_11630 This paper DH2463

Pseudomonas aeruginosa: PA14: DrocS1 This paper DH2464

Pseudomonas aeruginosa: PA14: DnarX This paper DH2465

Pseudomonas aeruginosa: PA14: DwspE This paper DH2466

Pseudomonas aeruginosa: PA14: DPA14_19340 This paper DH2467

Pseudomonas aeruginosa: PA14: DmxtR This paper DH2468

Pseudomonas aeruginosa: PA14: DcpxA This paper DH2469

Pseudomonas aeruginosa: PA14: DgtrS This paper DH2470

Pseudomonas aeruginosa: PA14: DPA14_24340 This paper DH2471

Pseudomonas aeruginosa: PA14: DrocS2 This paper DH2472

Pseudomonas aeruginosa: PA14: DPA14_26810 This paper DH2473

Pseudomonas aeruginosa: PA14: DsagS This paper DH2474

Pseudomonas aeruginosa: PA14: DcopS This paper DH2475

Pseudomonas aeruginosa: PA14: DpfeS This paper DH2476

Pseudomonas aeruginosa: PA14: DbqsS This paper DH2477

Pseudomonas aeruginosa: PA14: DPA14_30700 This paper DH2478

Pseudomonas aeruginosa: PA14: DPA14_30840 This paper DH2479

Pseudomonas aeruginosa: PA14: DczcS This paper DH2480

Pseudomonas aeruginosa: PA14: DPA14_32570 This paper DH2481

Pseudomonas aeruginosa: PA14: DPA14_36420 This paper DH2482

Pseudomonas aeruginosa: PA14: DercS This paper DH2483

Pseudomonas aeruginosa: PA14: DexaD This paper DH2484

Pseudomonas aeruginosa: PA14: DercS’ This paper DH2485

Pseudomonas aeruginosa: PA14: DparS This paper DH2486

Pseudomonas aeruginosa: PA14: DkdpD This paper DH2487

Pseudomonas aeruginosa: PA14: Dchina1 This paper DH2488

Pseudomonas aeruginosa: PA14: DcheA This paper DH2489

Pseudomonas aeruginosa: PA14: DPA14_45870 This paper DH2490

Pseudomonas aeruginosa: PA14: DPA14_46370 This paper DH2491

Pseudomonas aeruginosa: PA14: DPA14_46980 This paper DH2492

Pseudomonas aeruginosa: PA14: DPA14_48160 This paper DH2493

Pseudomonas aeruginosa: PA14: DphoQ This paper DH2494

Pseudomonas aeruginosa: PA14: DPA14_49420 This paper DH2495

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Pseudomonas aeruginosa: PA14: DfleS This paper DH2496

Pseudomonas aeruginosa: PA14: DpirS This paper DH2497

Pseudomonas aeruginosa: PA14: DlemA(gacS) This paper DH2498

Pseudomonas aeruginosa: PA14: DtctE This paper DH2499

Pseudomonas aeruginosa: PA14: DpprA This paper DH2500

Pseudomonas aeruginosa: PA14: DcolS This paper DH2501

Pseudomonas aeruginosa: PA14: DPA14_57170 This paper DH2502

Pseudomonas aeruginosa: PA14: DroxS This paper DH2503

Pseudomonas aeruginosa: PA14: DrcsC This paper DH2504

Pseudomonas aeruginosa: PA14: DpvrS This paper DH2505

Pseudomonas aeruginosa: PA14: DpilS This paper DH2506

Pseudomonas aeruginosa: PA14: DcbrA This paper DH2507

Pseudomonas aeruginosa: PA14: DpmrB This paper DH2508

Pseudomonas aeruginosa: PA14: DretS This paper DH2509

Pseudomonas aeruginosa: PA14: DPA14_64580 This paper DH2510

Pseudomonas aeruginosa: PA14: DaruS This paper DH2511

Pseudomonas aeruginosa: PA14: DntrB This paper DH2512

Pseudomonas aeruginosa: PA14: DPA14_68230 This paper DH2513

Pseudomonas aeruginosa: PA14: DenvZ This paper DH2514

Pseudomonas aeruginosa: PA14: DalgZ This paper DH2515

Pseudomonas aeruginosa: PA14: DmifS This paper DH2518

Escherichia coli: SM10lpir::KmR Lab collection DH2419

Chemicals, Peptides, and Recombinant Proteins

BCIP (5-Bromo-4-chloro-3-indolyl-phosphate) Roche REF 11585002001

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae: InvSc1 Invitrogen CAT# C81000

Oligonucleotides

(See Table S1) N/A N/A

Recombinant DNA

Suicide vector: pMQ30: GmR, sacB, URA3,

CEN6/ARSH4, lacZa

GenBank: DQ230317.1 N/A

Software and Algorithms

eADAGE This paper https://bitbucket.org/greenelab/

eadage

Crosstalk correction Donato et al., 2013 Included in the eADAGE bitbucket

repository

ConsensusClusterPlus R package Wilkerson and Hayes, 2010 https://www.bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

Sprint R package Piotrowski et al., 2011 https://cran.r-project.org/web/packages/

sprint/index.html

Other

King’s A: Pancreatic Digest of Gelatin (Difco) 20g/L;

MgCl2 1.4g/L; K2SO4 10g/L; Glycerol 10ml/L;

1.5% agar (Fisher)

King et al., 1954 N/A

LB: Tryptone (Fisher) 10g/L; Yeast Extract (Fisher)

5g/L; NaCl 5g/L; 1.5% agar (Fisher)

Bertani, 2004 N/A

MOPS Medium: Morpholinepropanesulfonic acid

40mM; Glucose 20 ml/L; K2SO4 2.67mM; K2HPO2

0mM, 25mM or 0.1 – 1 mM; 1.5% agar (Fisher)

Neidhardt et al., 1974 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Nematode Growth Medium (NGM): Pancreatic Digest

of Gelatin 2.5g/L; Cholesterol 5mg/L; NaCl 3g/L;

MgSO4 1mM; CaCl2 1mM; KCl 25mM; Potassium

Phosphate buffer pH6 0 or 25 mM; 1.5% agar (Fisher)

Zaborin et al., 2009 N/A

Peptone: Pancreatic Digest of Gelatin 10g/L; MgSO4

1.5g/L; K2SO4 10g/L; 1.5% agar (Fisher)

Lundgren et al., 2013 N/A

Pseudomonas Isolation Agar (PIA): PIA, prepared

as per instructions

BioWorld CAT# 30620067
CONTACT FOR REAGENT AND RESOURCE SHARING

As Lead Contact, Casey Greene is responsible for all resource and reagent requests. Please contact Casey Greene at csgreene@

mail.med.upenn.edu with requests and inquiries.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Pseudomonas aeruginosa
The Pseudomonas aeruginosa strain PA14 was used as the wild-type strain as well as the background for all deletion mutants. All

strains were maintained on LB with 1.5% agar and grown at 37�C.

METHOD DETAILS

Data Processing
We followed the same procedures for data collection, processing, and normalization as (Tan et al., 2016) and updated the

P. aeruginosa gene expression compendium to include all datasets on GPL84 platform from the ArrayExpress database (Rustici

et al., 2013) as of 31 July 2015. This P. aeruginosa compendium contains 125 datasets with 1051 individual genome-wide assays.

Processed expression values of the DtctD RNAseq dataset were downloaded from ArrayExpress (E-GEOD-64056) and normalized

to the range of the compendium using TDM (Thompson et al., 2016).

Construction of ADAGE Models
We constructed ADAGEmodels as described in (Tan et al., 2016). To summarize the process and outputs, we constructed a denois-

ing autoencoder for the gene expression compendium. Denoising autoencoders model the data in a lower dimension than the input

space, and the models are trained with random gene expression measurements set to zero. Thus an ADAGEmodel must learn gene-

gene dependencies to fill in this missing information. Once the ADAGE model is trained, each node in the hidden layer contains a

weight vector. These positive and negative weights represent the strength of each gene’s connection to that node.

Gene Signatures as Sign-specific High-Weight Gene Sets
In previous work (Tan et al., 2016) we defined high-weight (HW) genes as those in the extremes of the weight distribution on the pos-

itive or negative side of a node. Here, we use a more granular definition that accounts for sign specificity. Each node’s gene weights

are approximately normal and centered at zero in ADAGEmodels (Tan et al., 2016, 2015).We defined positive HWgenes as those that

weremore than 2.5 standard deviations from themean on the positive side, and negative HWgenes as those that weremore than 2.5

standard deviations from themean on the negative side. After this split, amodel with n nodes provides 2n gene signatures. Because a

node is simply named by the order that it occurs in a model, we named two gene signatures derived from one node as ‘‘NodeXXpos’’

and ‘‘NodeXXneg’’.

KEGG Pathway and GO-BP Term Enrichment Analysis
To evaluate the biological relevance of gene signatures extracted by an ADAGE model, we tested how they related to known KEGG

pathways (Kanehisa and Goto, 2000). We tested a signature’s association with each KEGG pathway using hypergeometric test and

corrected the p-value by the number of KEGG pathways we tested following the Benjamini–Hochberg procedure. We used a false

discovery rate of 0.05 as the significance cutoff. The same procedure was repeated using GO-BP terms. We downloaded biological

process GO terms from pseudomonas.com and only used manually curated terms. For KEGG and GO terms, we only considered

terms with more than 5 genes and less than 100 genes as meaningful pathways or processes.

Genes can be annotated to multiple pathways. To control for this effect in our analysis, we also performed a parallel analysis after

applying crosstalk correction as described in (Donato et al., 2013). This approach uses expectation maximization to map each gene

to the pathway in which it has the greatest predicted impact. A gene-to-pathway membership matrix, defined using KEGG pathway
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annotations, initially makes the assumption that each gene’s role in all of its assigned pathways remains constant independent of

context. We then applied pathway crosstalk correction using genes’ weights for each node in the ADAGEmodel. We used the expec-

tation maximization algorithm to maximize the log-likelihood of observing the membership matrix given each node’s weight vector.

This process inferred an underlying gene-to-pathway impact matrix and iteratively estimated the probability that a particular gene g

contributed the greatest fraction of its impact to some pathway P. Upon convergence, we assigned each gene to the pathway in

which it had the maximum impact. The resulting pathway definitions do not share genes. We then used these corrected definitions

for an analysis parallel to the KEGG process described above.

Reconstruction Error Calculation
The training objective of ADAGE is to, given a sample with added noise, return the originally measured expression values. The error

between the reconstructed data and the initial data is the ‘reconstruction error.’ To summarize the difference over all genes we used

cross-entropy between the original sample and the reconstruction, which has been widely used with these methods and in this

domain (Tan et al., 2016; Vincent et al., 2008). Thismatches the statistic used during training of themodel. To calculate reconstruction

error for a model, we use the mean reconstruction error across samples.

Model Size Heuristics
One important parameter of a denoising autoencoder model is the number of nodes in the hidden layer, which we refer to as the

model size. To evaluate the impact of model size and choose the most appropriate size, we built 100 ADAGE models at each model

size of 10, 50, 100, 200, 300, 500, 750, and 1000, using different random seeds. The random seed determines the initialization values

in the weight matrix and bias vectors in ADAGE construction, so different random seeds will result in models that reach different local

minima. Other training parameters were set to the values previously identified as suitable for a gene expression compendium (Tan

et al., 2015). In total, 800 ADAGE models, i.e. 100 at each model size, were generated in the model size evaluation experiment.

Determining the optimal structure of a neural network is challenging. We evaluated the model size through both a data-driven heu-

ristic and a knowledge-driven heuristic. Importantly, the data-driven heuristic requires no curated pathway information and can be

applied even when such resources are unavailable for an organism. During ADAGE training, neural networks are trained to recon-

struct the input from data with noise added. The reconstruction error can be used to estimate model sizes that can be supported

by the available P. aeruginosa gene expression data. The reconstruction error quickly decreases as model size increases and

reaches a floor at model size of approximately 300 (Figure S2A). Further increasing model size does not improve reconstruction,

suggesting that the available data are insufficient to support larger models.

While ADAGEmodels are constructed without the use of any curated information such as KEGG and GO, we can compare models

by the extent to which they cover the pathways and process defined in these resources to determine how different parameters affect

models. For models of different sizes (10-1000 nodes), we determined the number of KEGGpathways significantly associated with at

least one gene signature in a model, referred to as KEGG pathway coverage for that model, and found that KEGG pathway coverage

increased asmodel size increased until a model size of approximately 300 (Figure S2B). The number of pathways per node (including

pathways associated with both the positive and negative signatures in a node) for all nodes with at least one associated KEGG

pathway decreased as model size increased (Figure S2C), suggesting that multiple pathways were grouped in small models and

were separated into more discrete features in large models with more nodes. We also repeated pathway coverage evaluation using

manually curated Gene Ontology Biological Process (GO-BP) terms and obtained similar results as using KEGG pathways (Fig-

ure S2DE). Though the ADAGE method was unsupervised and had no access to KEGG or GO information during model training,

we inferred that models that extracted signatures corresponding to known pathways better captured biological signals in the com-

pendium. Therefore, considering the data-driven and knowledge-driven heuristics together, we identified a 300-node neural network

model as most appropriate for the existing P. aeruginosa gene expression compendium.

Sample Size Heuristics
To evaluate the impact of sample size on the performance of ADAGE models, we randomly generated subsets of the P. aeruginosa

expression compendium with sample size of 100, 200, 500, and 800. We then trained 100 ADAGE models at each sample size, each

with a different combination of 10 different random subsets and 10 different random training initializations. To evaluate each model,

we randomly selected 200 samples not used during training as its testing set. We performed this subsampling analysis at model size

50 and 300. In total, 800 ADAGE models were built in the sample size evaluation experiment.

We aimed to identify the amount of data required to saturate themethod’s ability to discover biologically supported signatures and

to identify how far the compendium could be reduced before performance dropped precipitously.We examined the number of KEGG

pathways associated with at least one gene signature (pathway coverage) as a function of the size of the training set (Figure S2F). In

the 50-node models, the size used in (Tan et al., 2016), the average KEGG pathway coverage at each training size increased signif-

icantly up to 500 samples (Tukey’s HSD adjusted p-values < 0.05 between models trained with 100, 200, and 500 samples), but dif-

ferences beyond 500 training samples were not significant (Tukey’s HSD adjusted p values > 0.05 between models trained with 500,

800, and 1051 samples). For 300-node models, pathway coverage showed significant increases (Figure S2F) between the models

constructed with 100, 200, 500, and 800 samples (Tukey’s HSD adjusted p-values < 0.05) but not between 800 and 1051 (Tukey’s
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HSD adjusted p-value > 0.05). The slower increase in pathway coverage when sample size is relatively large suggests redundancy in

the compendium, potentially due to biological replicates or experiments probing similar processes. This highlights the importance of

data that capture diverse processes.

Using the subsampling strategy, we also evaluated the reconstruction error of each model on its training set and a randomly cho-

sen held out test set of 200 samples. As sample size increased, training reconstruction errors increased slightly while testing recon-

struction errors dropped dramatically (Figure S2G).We fitted exponential models between sample size and the differences of training

and testing errors (R2= 0.78 for 50-node models and R2= 0.83 for 300-node models). We extrapolated from these models to predict

that testing errors would approximately match training errors when sample size was 782 for 50-node models and 1076 for 300-node

models. These results suggested that smaller models were less sensitive to sample size, likely because they have fewer parameters

to fit and also that our 1051 sample compendium was sufficient to train a 300-node model.

Construction of eADAGE Models
We constructed ensemble ADAGE (eADAGE) models by combining many individual ADAGE models in to a single model. For each

eADAGE model we combined 100 individual ADAGE models. The 100 models were trained with identical parameters but distinct

random seeds. For an eADAGE model of size 300, we trained 100 individual models with 300 nodes each, which provided 30000

total nodes. Each node has a weight vector. We have previously observed that high-weight genes provided the most information

to each node (Tan et al., 2016), so we calculated a weighted Pearson correlation between each node’s weight vectors. Our weighted

Pearson correlation used ðjnode1 weightj+ jnode2 weightjÞ=2 as the weight function for each gene. We compared this to an un-

weighted Pearson correlation (corADAGE) as well a baseline ADAGE model.

After calculating correlation (weighted for eADAGE and unweighted for corADAGE), we converted the correlation to distance by

calculating ð1� correlationÞ=2. This provided a 30000*30000 distance matrix storing distances between every two nodes. We clus-

tered this distancematrix using the Partition AroundMedoids (PAM) clustering algorithm (Park and Jun, 2009).We implemented clus-

tering in R using the ConsensusClusterPlus package (Wilkerson and Hayes, 2010) from Bioconductor with the ppam function from

Sprint package to perform parallel PAM (Piotrowski et al., 2011). We set the number of clusters to match the individual ADAGEmodel

(e.g. 300) allowing for direct comparison between the eADAGE and ADAGE methods.

Clustering assigned each node to a cluster ranging from 1 to 300. We combined nodes assigned to the same cluster by calculating

the average of their weight vectors. These 300 averaged vectors formed the weight matrix of the eADAGE model. Because the

ensemble model is built from the weight matrices of individual models, it does not have the parameters that form the bias vectors.

We built 10 eADAGE and 10 corADAGE models from 1000 ADAGE models with each ensemble model built upon 100 different indi-

vidual models. The individual eADAGEmodel used for biological analysis in this work was constructed with random seed 123, which

was arbitrarily chosen before model construction and evaluation.

PCA and ICA Model Construction
We constructed PCA and ICA models and defined each model’s weight matrix following the same procedures in (Tan et al., 2016).

To compare with the 300-node eADAGE, we generated models of matching size (300 components). For ICA, we evaluated 10 rep-

licates. PCA provides a single model. PCA and ICA models were evaluated through the KEGG pathway enrichment analysis

described above.

Activity Calculation for a Gene Signature
We calculated a signature’s activity for a specific sample as A=W$E=N, in which W is a vector of genes’ absolute weights in that

signature, E is a vector of genes’ expression values after zero-one normalization in that sample, and N is the number of genes. It

can be viewed as an averaged weighted sum of genes’ expression levels for genes in the signature. We normalized a signature’s

activity by the number of genes (N) in that signature, because different signatures have different number of genes. We use gene’s

absolute weight value in activity calculation to keep activity positive. In this way, a high activity indicates that majority of genes in

the signature are highly expressed in the sample and a low activity indicates that majority of genes in the signature are lowly ex-

pressed in the sample.

Media Annotation of the P. aeruginosa Compendium
A team of P. aeruginosa biologists annotated themedia for all samples in the compendium by referring to information associated with

each sample in the ArrayExpress (Rustici et al., 2013) and/or GEO (Edgar, 2002) databases and along with the original publication, if

reported. Each sample was annotated by two curators separately. Conflicting annotations, if they occurred, were resolved by a third

curator. The media annotation for all samples in the compendium were provided in Table S1.

Identification of Signatures Activated across Media
We calculated an activation score to identify gene signatures with dramatically elevated or reduced activity in a specific medium. We

grouped samples by their medium annotation. For each gene signature and medium combination, we calculated the absolute differ-

ence between the mean activity of the signature for samples in that medium as well as the mean activity across the remainder of
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samples in the compendium.We divided this difference in the means by the range of activity for all samples across the compendium.

This score captures the proportion by which the mean activity in a medium differs relative to the total difference across the compen-

dium. We termed this ratio the activation score.

To identify the most specifically active signatures for each medium, we constructed a table for all pairs with an activation score

greater than or equal to 0.4 (Table S2). This was highly stringent: it captured only the top 2.4% of the potential signature-medium

pairs (Figure S4A). To identify pan-media signatures, we limited signatures to those that were active in multiple media (greater or

equal to 0.4) and averaged their activation scores (Table S3). These signatures exhibit parallel patterns for multiple media across

multiple distinct experiments.

Definition of the PhoB Regulon
A PhoB regulon for the PAO1 genome was adapted from the PhoB regulon of PA14 in (Bielecki et al., 2015) in order to be com-

parable to models built with PAO1 genome. Of the 187 genes in the PA14 regulon, 160 were in the PAO1 reference genome

(www.pseudomonas.com).

BCIP Assay
King’s A (King et al., 1954), LB (Bertani, 2004), MOPSMedium (Neidhardt et al., 1974), NGM (Zaborin et al., 2009), Peptone (Lundgren

et al., 2013) and PIA (BioWorld) were supplemented with 5-bromo-4-chloro-3-indolyl phosphate (BCIP) DMF solution to a final con-

centration of 60 mg/mL. BCIP assay plates were inoculated with 5 ml of overnight P. aeruginosa culture in LB broth. Colonies were

grown for 16 hours at 37�C thenmatured at room temperature until imaging. Images were collected 16 and 32 hours post inoculation.

Screen of a Histidine Kinase Mutant Collection
Molecular techniques to construct the histidine kinase (HK) knock out collection were carried out as described below. To construct

deletion plasmids, flanking sequences of target genes were amplified by PCR (for primers see Table S1) and fused together by over-

lap extension PCR. Primers contained overlap with both the P. aeruginosa sequence and that of the pMQ30 (GenBank: DQ230317.1)

for use in yeast cloning. The deletion sequences and plasmidswere transformed intoS. cerevisiae InvSc1 and, after overnight growth,

isolated as deletion constructs. Constructs were transformed by electroporation into E. coli S17 lpir which was mated with

P. aeruginosa and deletion mutants were resolved with selection by 50 mg mg-1 gentamicin and counter selection with 5% sucrose.

Mutants were confirmed by DNA sequencing using primers that flanked the deletion site.

For each strain in the HK collection, a BCIP assaywas performed on PIA. Plates were struckwith an overnight P. aeruginosa culture

concentrated two-fold by centrifugation. Plates were incubated at 37�C 12-16 hours and matured at room temperature for an addi-

tional 12-16 hours alkaline phosphatase activity was determined qualitatively, based on blue color.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the quantification and statistical analyses were performed in R. Details of each analysis are specified in themain text andmethods

where each analysis is discussed.

DATA AND SOFTWARE AVAILABILITY

Weprovide theP. aeruginosa expression compendium alongwith all the code used in this paper on Zenodo (Tan et al., 2017).We also

provide the eADAGE model used in the cross-compendium medium analysis, including the model’s weight matrix and gene signa-

tures. The eADAGE repository is also tracked under version control at https://bitbucket.org/greenelab/eadage.
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