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 2 

ABSTRACT 15 

Metagenome sequencing enables genetic characterization of complex microbial 16 

communities. However, determining the activity of isolates within a community presents 17 

several challenges including the wide range of organismal and gene expression 18 

abundances, the presence of host RNA, and low microbial biomass at many sites. To 19 

address these limitations, we developed “targeted expression analysis sequencing” or 20 

TEAL-seq, enabling sensitive species-specific analyses of gene expression using highly 21 

multiplexed custom probe pools. For proof-of-concept we targeted about 1,700 core and 22 

accessory genes of Staphylococcus aureus and S. epidermidis, two key species of the 23 

skin microbiome. Two targeting methods were applied to laboratory cultures and human 24 

nasal swab specimens. Both methods showed a high degree of specificity, with >90% 25 

reads on target, even in the presence of complex microbial or human background 26 

DNA/RNA. Targeting using molecular inversion probes demonstrated excellent 27 

correlation in inferred expression levels with bulk RNA-seq. Further, we show that a linear 28 

pre-amplification step to increase the amount of nucleic acids for analysis yielded 29 

consistent and predictable results when applied to complex samples and enabled profiling 30 

of expression from as little as 1 ng of total RNA. TEAL-seq is much less expensive than 31 

bulk metatranscriptomic profiling, enables detection across a greater dynamic range, and 32 

uses a strategy that is readily configurable for determining the transcriptional status of 33 

organisms in any microbial community. 34 

 35 

 36 

 37 
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IMPORTANCE 38 

The gene expression patterns of bacteria in microbial communities reflect their activity 39 

and interactions with other community members. Measuring gene expression in complex 40 

microbiome contexts is challenging, however, due to the large dynamic range of microbial 41 

abundances and transcript levels. Here we describe an approach to assessing gene 42 

expression for specific species of interest using highly multiplexed pools of targeting 43 

probes. We show that an isothermal amplification step can allow profiling of low biomass 44 

samples. TEAL-seq should be widely adaptable to the study of microbial activity in natural 45 

environments. 46 

 47 

INTRODUCTION 48 

 49 

As microbiome research matures, studies are shifting from those that establish 50 

correlations between microbial profiles and disease states to those that define the 51 

mechanisms by which microbes impact host physiology (1, 2). Metagenome shotgun 52 

sequencing (mWGS) analysis has been a powerful discovery tool, but it cannot address 53 

the functional state of constituent microbes. Measurement of microbial gene expression 54 

in a natural context is key to understanding the mechanistic forces driving commensalism 55 

and pathogenesis within community and host relationships (3–6). 56 

Changes in diet, drug treatment, introduction of a pathogen, or alteration in host 57 

pathways may change the activity of the microbiome, not just its composition (6, 7). 58 

Metatranscriptome (metaTx) profiling can uncover which organisms are transcriptionally 59 

active, and which genes are expressed. However, the efficacy of metaTx is limited by the 60 
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large dynamic range of organismal abundance, gene expression levels, and—in some 61 

cases—the presence of host transcripts. Thus, quantitation of gene expression in lower 62 

abundance organisms by untargeted metaTx sequencing remains infeasible due to the 63 

cost of sequencing to sufficient coverage depth. A few metaTx studies have been 64 

published that illustrate this point. One study evaluated the contribution of vitamin B12 65 

production by skin microbes to the development of acne (8). Another examined 66 

transcription of the fecal microbiome of adult men (9). Both studies required ~100 million 67 

reads/sample. New, more accessible methods are needed to transcriptionally profile 68 

microbes of interest in their natural milieu. 69 

The skin is an ideal proving ground for the development of new technologies that 70 

measure microbial gene expression in mixed communities. The abundance of bacterial 71 

species can vary widely at different skin sites but importantly, abundance is a poor 72 

prognosticator of functional importance (10–12). At most skin sites host cells contribute 73 

over 90% of the total extracted nucleic acids, making mWGS and metaTx extremely 74 

inefficient, particularly for characterizing lower abundance organisms (13). 75 

Staphylococcus (S.) spp. are keystone contributors to cutaneous immunity, barrier 76 

integrity, and microbial community homeostasis, including antagonism with skin pathogen 77 

S. aureus (14–17). Our previous metaTx work with skin swabs, however, yielded <5% of 78 

reads corresponding to microbial transcripts, highlighting the challenges of studying these 79 

communities using common methods (unpublished).  80 

Targeting microbial profiling to specific genes or genomes enables more cost-81 

effective and comprehensive evaluation of microbial composition and activity. Array-82 

based (18–20) and capture-based (21–24) strategies have been used to assess bacterial 83 
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and viral abundance, but those methods are either difficult to customize, expensive, 84 

laborious, or all three. The availability of low-cost oligonucleotide pools from multiple 85 

vendors offers assay development options based on highly multiplexed custom-designed 86 

probes, including the ability to iteratively optimize pools based on performance and facile 87 

incorporation of new content.  88 

We previously developed MA-GenTA (Microbial Abundances from Genome 89 

Tagged Analysis) as a quantitative and cost-effective method for species-level microbial 90 

profiling (25). We used highly multiplexed (>16,000) oligonucleotide probes to derive 91 

relative abundance data for microbes from the mouse gut. MA-GenTA and mWGS data 92 

demonstrated excellent correlation down to 0.01% relative abundance (25) and enabled 93 

inference of gene pathway composition at a cost only modestly higher than 16S rRNA 94 

amplicon sequencing. Here we build on this experience by extending the methods to 95 

targeted gene expression profiling.  96 

 97 

 98 

RESULTS 99 

Experimental design 100 

We selected Staphylococcus aureus (Sa) and S. epidermidis (Se) for developing targeted 101 

transcriptome profiling methods as they are keystone species in the skin microbiome, 102 

important for human health and disease, and well-characterized genomically and 103 

functionally (26–28). Two targeting strategies were pursued: a single-primer extension 104 

(SPE) method based on MA-GenTA (25) and a molecular inversion probe (MIP) method, 105 

previously published for high-plex SNP genotyping assays (29). SPE uses a single 40-106 
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base primer that anneals to target sequences to prime DNA synthesis on a partially 107 

constructed Illumina sequencing library. MIP involves hybridization of the probe to the 108 

target, followed by extension across the gap region, ligation, and amplification of closed 109 

circles using primers with Illumina-compatible tails. Both methods target a cDNA or 110 

genomic DNA template.  111 

We established experimental conditions to evaluate each targeted sequencing approach. 112 

Initial tests used RNA and genomic DNA isolated from pure cultures of Se, Sa, mixtures 113 

of the two, and controls that should not contain target sequences. We compared technical 114 

reproducibility, sensitivity to RNA input amount, specificity of targeting in mixed samples, 115 

the impact of rRNA depletion, the effect of pre-amplification of cDNA prior to capture, and 116 

comparison of targeted RNA-seq methods with standard bulk RNA-seq (Figure 1). 117 

 118 

Probe pools are >94% on-target and species-specific  119 

Probe design for each species maximized within-species binding and limited cross-120 

species binding (see Methods). The SPE design encompassed 6,121 probes targeting 121 

1,723 Sa coding sequences (CDS) and 5,879 probes targeting 1,670 Se CDS (Figure 122 

 
 

Figure 1. Layout of the experimental design. The experimental variables used for 
evaluating the targeted RNA-seq approaches are shown, illustrating how RNA samples 
were processed for analysis to determine the optimal TEAL-seq method. 
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2A). The MIP design encompassed 4,960 probes targeting 1,694 Sa CDS and 4,863 123 

probes targeting 1,748 Se CDS (Figure 2B). A combined pool of Se and Sa probes was 124 

synthesized for each targeting method. 125 

Given the low biomass of the microbiome at many body sites, we evaluated the use of 126 

single-primer isothermal amplification (SPIA) (30) to increase the amount of template 127 

available for targeting and library construction. A theoretical advantage of targeted 128 

sequencing is that it makes depletion of rRNA unnecessary; we therefore also tested the 129 

effect of rRNA depletion on both bulk and targeted RNA-seq. 130 

For both SPE and MIP, 94-99% of reads map to the targeted regions across all 131 

experimental conditions, indicating a high efficiency of targeting (Figure 2C, 132 

Supplemental Table 1). Notably, no ribosomal (r)RNA reads were detected, even in 133 

samples processed without rRNA depletion. Single-species experiments showed that 134 

probes were highly specific to the targeted genome when full length reads were aligned 135 

to the reference genome. In addition, few reads were obtained from E. coli RNA, human 136 

genomic DNA, and mouse microbiome RNA (cDNA) (data not shown), indicating that 137 

cross-hybridization is minimal, even in the presence of complex microbial nucleic acids. 138 
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 139 

 140 

Targeted transcriptomics is reproducible  141 

We tested the reproducibility of inferred gene expression levels based on counts per 142 

million (CPM) per probe using MIP and SPE by comparing variation across technical 143 

replicates to that of bulk RNA-seq. We found technical replicates (libraries prepared from 144 

the same RNA sample) highly correlated for all sequencing approaches (Figure 3A). 145 

Subsequently, we determined that libraries from the same RNA sample with and without 146 

SPIA treatment were highly correlated for bulk RNA-seq and MIP, but less so for SPE 147 

(Figure 3B). Further, when SPIA was used, libraries prepared from standard amounts of 148 

 
 

Figure 2. Distribution of number of probes per gene in the targeted strains. A) 
Probes target >50% Sa and Se CDS in SPE with at least one unique probe. B) 
Probes target >50% Sa and Se CDS in MIP with at least one unique probe. C) A 
high proportion of reads map on target with when tested on DNA and RNA controls. 
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RNA (“Standard Input”, 10 ng) and an order of magnitude less RNA (“Low Input”, 1 ng) 149 

were still correlated for both MIP and SPE (Figure 3C).  150 

 151 

 152 

 153 

 154 

 
 

Figure 3. Evaluation of reproducibility using a 50:50 mixture of Sa and Se 
RNA. A) Technical replicates (n=2) are highly correlated for bulk RNA-seq, MIP and 
SPE. B) Samples with and without SPIA have good correlation for bulk RNA-seq 
and MIP, but less so for SPE. C) Samples with low (1 ng) and standard (10 ng) 
input total RNA amounts correlate well in MIP and SPE. Correlation coefficients (R) 
and p-values from Pearson tests. 
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Probe performance varies across CDS 155 

Targeted sequencing of Se and Sa gDNA was used to evaluate the extent of variation in 156 

probe performance. We observed a wide range of CPM/probe, with Se probes having a 157 

much broader range than Sa probes in both the SPE and MIP datasets (Figure 4A). Since 158 

Se and Sa probes were synthesized as a single pool, there is no a priori reason why they 159 

should have such different performance between the two species. We considered 160 

whether there is a gradient of genomic copy number ranging from the origin to the 161 

terminus of replication due to differences in growth rate (31), however, we found that 162 

genome position was poorly correlated with CPM levels in both species (Supplemental 163 

Figure 1).  164 

 
Supplementary Figure 1. CPM bias based on gene position relative to origin of 
replication. There is no substantial bias introduced by position relative to the origin of 
replication for Se Tu3298 (A) or Sa USA300 (B). 
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For SPE probes, there was a marked increase in average CPM with probe melting 165 

temperature (TM) (Figure 4B), whereas TM had minimal correlation with CPM for MIP 166 

probes (Figure 4C). We also considered the performance of probes that have 167 

mismatches to the test genome compared to perfect-match probes. This is an important 168 

consideration for profiling of microbial communities, because the exact sequence of the 169 

target genomes will not often be known. SPE probes showed a substantial reduction in 170 

read counts with increasing numbers of mismatches, whereas MIP showed little or no 171 

effect of up to three mismatches (Supplemental Figure 2). Given the limitations of the 172 

SPE approach, we focused our remaining analyses on the MIP datasets. 173 

 174 

 175 

 
Supplemental Figure 2. Read mapping to experimental genomes. Mapping 
rates as the number of mismatches between the probe design sequence and the 
experimental genome increase for SPE (A) and MIP (B). 
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 176 

Targeting strategies are compatible with signal amplification  177 

The inability to perform oligo-dT priming for cDNA synthesis from microbial transcripts 178 

means that rRNA must be depleted as part of library construction for bulk RNA-seq. 179 

However, targeting offers the possibility of using total RNA as input, thus reducing 180 

processing steps and any potential bias introduced by rRNA depletion. We tested the 181 

fidelity of targeting (MIP) with and without ribodepletion and compared the results to bulk 182 

RNA-seq. There is only slightly lower correlation in CPM between samples sequenced by 183 

bulk RNA-seq and MIP (mean R2=0.47, Figure 5A for Sa, Figure 5B Se) than there are 184 

between MIP samples with and without ribo-depletion (mean R2 = 0.64, Figure 5C for Sa, 185 

Figure 5D Se), indicating that rRNA depletion had a substantial impact on many non-186 

ribosomal transcripts.  187 

 
Figure 4. Probe performance varies and correlates with melting temperature in 
SPE data more so than MIP data. A) Sequencing of gDNA with SPE shows a range 
of CPMs for Sa (black) and Se (grey) probes. B) Probe CPM correlates with melting 
temperature in SPE data for both Sa (black) and Se (grey). C) CPM has minimal 
correlation with melting temperate in MIP data for both Sa (black) and Se (grey). 
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To assess SPIA’s influence on resulting mRNA measurements, we quantified mRNA 188 

abundance as inferred from bulk RNA-seq versus MIP with and without SPIA. Bulk RNA-189 

seq and MIP samples with and without SPIA correlated highly (mean R2 = 0.83, Figure 190 

5E for Sa, Figure 5F Se), more highly than samples with and without rRNA depletion. 191 

Further, CDS-level CPM values across bulk and targeted RNA-seq were less variable 192 

when SPIA amplification was used (Figure 5A, B grey) than when SPIA was not used 193 

(Figure 5A, B black). In summary, since SPIA amplification introduces significantly less 194 

sum squared error (SSE) than ribo-depletion does (p<0.0001 by Wilcoxen test) for both 195 

species (Figure 5G and 5H), we determined MIP with SPIA to be the optimal workflow 196 

for TEAL-seq (as outlined in Figure 1). 197 

 198 

 
Figure 5. Sources of variation in targeted RNA-seq. A) comparison of CDS-level 
expression in bulk RNA-seq and MIP (targeted) without SPIA (black) and with SPIA (grey)  
for Sa and Se (B). C) MIP with and without RNA depletion without SPIA (black) and with 
SPIA (grey) for Sa and Se (D). E) MIP with and without SPIA amplification with ribo-
depletion (black) and with ribo-depletion(grey) for Sa and Se (F) . G) Quantification of sum 
of squared error (SSE) across comparisons for Sa and Se (H). Correlation coefficients 
(R) and p values from Pearson tests. **** p<0.0001, Wilcoxon test.  
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 199 

TEAL-seq captures gene expression changes across growth conditions 200 

 A major goal of RNA-seq analysis is to identify differentially expressed genes 201 

(DEGs) across conditions of interest to infer underlying biology and nominate targets for 202 

downstream functional studies. To test the ability of TEAL-seq to capture DEGs under 203 

physiologically relevant conditions, we measured gene expression from Sa and Se 204 

cultures grown in TSB (pH 7), acidic TSB (pH 4.8), and TSB with urea (4.5%w/v) to model 205 

acid stress commonly encountered by staphylococci in vivo. Growth conditions were 206 

delineated by the first and second PCs which together explained 97% of variance for Sa 207 

(Figure 6A) and 94% of variance for Se (Figure 6B). Further, genes with the highest fold-208 

change in response to acid were consistent with known acid responses, in particular 209 

urease genes in Sa (Figure 6C) and genes previously identified as upregulated by acid 210 

in Se (Figure 6D). Clustering of Sa samples shows that the expression patterns are driven 211 

first by condition (Figure 6E). For Se, condition also influences expression of these genes 212 

of interest, although urea treatment had less of an effect than acid (Figure 6F). Our results 213 

suggest that TEAL-seq performs predictably for the analysis of differential gene 214 

expression and thus is a valuable approach for comparative microbial studies.  215 
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 216 

 
Figure 6. TEAL-seq detects urease and acid response genes as differentially 
expressed under acid stress. A) Principal components of targeted gene expression 
separate samples by growth condition for Sa and Se (B). C) Differential expression 
between control (TSB) and acid treatment identifies urease genes for Sa (red) and the 
previously published acid response for Se (red and blue) (D). E) Urease and acid 
response probes across conditions are consistent across CDSs for Sa and Se (F). Each 
column represents biological replicates (n=3). 
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DEG analysis from model and human 217 

samples 218 

To model the technical challenge of 219 

low amounts of material extractable from skin 220 

microbiomes, we applied TEAL-seq to RNA 221 

extracted from reconstructed human 222 

epidermis (RHE) colonized with clinical skin 223 

microbiome isolates as well as RNA 224 

extracted directly from human nasal swabs. 225 

Sa and Se transcripts were readily detected 226 

from both samples. Transcript levels derived 227 

from these sources were substantially 228 

different from those grown in TSB (PC1, 229 

separation by sample type accounted for 230 

37% of variance for Sa (Figure 7A) and 46% 231 

of variance for Se (Figure 7B). Notably, 232 

samples from independent RHE and swabs 233 

were more variable than replicates of growth 234 

in TSB, as expected for complex models and 235 

ex vivo samples. Further, there was high 236 

correlation in expression profiles for samples 237 

grown in TSB or between sequencing 238 

 
Figure 7. Sa upregulates urease gene 
expression when grown on RHE and as 
sampled in nasal swabs, but Se does not. A) 
PCAs separate expression from growth on RHE 
from in vitro (TSB) and human nasal swabs in 
Sa B) and Se. C) Samples correlate by source 
more than by SPIA treatment in Sa D) and Se. 
Values are pairwise distances in Pearson 
correlation matrices. E) Urease genes (operon 
structure and direction per diagram) are induced 
on RHE and in nasal swabs for Sa F) but not Se.  
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replicates of the same sample for both Sa (Figure 7C) and Se (Figure 7D). Thus, this 239 

variation is likely biological.  240 

We used TEAL-seq to compare expression patterns of urease genes from bacteria 241 

grown in TSB, on RHE, or isolated from swab samples. A subset of both nasal swabs and 242 

RHE samples showed marked increase in the expression of urease genes relative to TSB 243 

for Sa (Figure 7E). Interestingly, another subset of swab and RHE samples had lower 244 

expression of urease genes compared to TSB for Sa. Se samples from RHE and swabs 245 

also displayed variable urease gene expression compared to those grown in TSB, 246 

although the trend was less pronounced than in Sa samples (Figure 7F). To further 247 

validate TEAL-seq as a faithful measure of mRNA in complex samples, we attempted to 248 

compare the expression of urease genes by TEAL-seq to that detectable by bulk RNA 249 

sequencing on the same RHE sample. Notably, not all samples had detectable microbial 250 

mRNA using bulk RNA sequencing; colonized RHE samples sequenced to depths of 8.5 251 

– 42.1 million (m=30.4 million) contained only 0.06 – 1.5% (m=0.3%) reads that mapped 252 

to Sa or Se mRNA and thus failed to provide sufficient reads to measure genome-wide 253 

expression (Supplemental Table 3). These results demonstrate that TEAL-seq can be 254 

used to measure gene expression of in vivo relevant pathways in complex samples in a 255 

manner more sensitive than the current state-of-the-art method.  256 

 257 

Discussion 258 

 259 

We present an approach for targeted gene expression analysis optimized for samples 260 

with low biomass—TEAL-seq—that yields a high proportion of reads on target, even in 261 
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the presence of total RNA input and complex background RNA or DNA. We tested two 262 

oligo-based methods for targeting, MIP and SPE, and determined MIP to be more robust 263 

than SPE. Both methods were capable of inference of mRNA levels relative to bulk RNA-264 

seq, but expression levels inferred from MIP had less probe-to-probe variation. Further, 265 

we showed that cDNA amplification using SPIA reduced variation between replicates and 266 

had less impact on inferred expression level than rRNA depletion. Therefore, we propose 267 

the use of MIP with SPIA for measuring bacterial transcript levels in low biomass samples. 268 

 269 

We showed that probes designed based on genes of laboratory strains captured gene 270 

expression information from other common experimental strains and clinical isolates of 271 

the same species. This is in part due to short probe length, ensuring coverage of 272 

conserved genes across strains, as well as the design, which enabled integration of data 273 

across multiple probes per CDS. Cross-strain capture is an important feature of this 274 

method as the application of TEAL-seq to measure gene expression of real-world 275 

samples will require probes to be designed from existing genomic or metagenomic data. 276 

Our benchmarking of results from probes designed for Sa strain M2872 and Se strain 277 

ATCC14990 and applied to Sa strain USA300 and Se strain Tu3298 as well as clinical 278 

isolates of both species demonstrate the flexibility of TEAL-seq. 279 

 280 

We used TEAL-seq to assess changes in gene expression of Sa and Se grown in TSB at 281 

pH 7 and pH 4.8 and identified highly concordant changes in expression compared to 282 

previous studies. We confirmed that Sa responds to acid stress with urease genes and 283 

Se does not. This is significant as urea is a human skin-produced metabolite that has 284 
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important roles in barrier defense (32), and differences in Sa and Se responsiveness to 285 

acidic conditions may explain differences in invasiveness (33).   286 

 287 

MetaTx has had limited usage in studying low biomass microbiomes. However, TEAL-288 

seq successfully captured predictable expression profiles from multiple complex sample 289 

types, including those isolated clinically. New tools are needed for identification of 290 

population-level expression of virulence pathways or immunogenic metabolites at species 291 

resolution, as these will contextualize the function of the microbiome as a collective and 292 

refine our understanding of the contribution of individual species to the community (34–293 

37). Additional studies applying TEAL-seq in the context of complex natural microbial 294 

communities will be needed to further demonstrate the potential of this method in 295 

experimentally relevant systems. However, the robust performance of TEAL-seq in 296 

capturing biologically significant transcriptional patterns from skin microbes grown under 297 

skin-relevant stress and reconstructed human epidermis make it a promising tool for 298 

future applications.  299 

 300 

Methods 301 

Bacterial samples and RNA and DNA isolation.  Single colonies of Staphylococcus 302 

aureus USA300 and Staphylococcus epidermidis Tu3298 were inoculated into 2ml Tryptic 303 

Soy broth (TSB) (BD cat:211825) and grown overnight at 37°C and 200 rpm agitation. 304 

Overnight cultures were sub-cultured into fresh 2  ml TSB medium at OD600 ~0.05 and 305 

allowed to grow to OD600 ~0.5-0.6. For stress conditions, as in (38), overnight cultures 306 

were grown as described above and then sub-cultured into mildly acidic TSB (pH 4.8) or  307 
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TSB+ 4.5% w/v urea and allowed to grow to OD600 ~0.5-0.6. For RNA extraction, to 1 ml 308 

of each mid-log phase culture, 2 ml of RNAprotect® Bacteria Reagent (cat # 76506, 309 

Qiagen Inc.) was added, and cells were centrifuged at 8000 x g for 5 minutes at 4°C. Cell 310 

pellets were then resuspended in RLT buffer (RNeasy Mini kit, (cat # 74104, Qiagen Inc.) 311 

and transferred to 2 ml safe-lock tubes containing 50 mg acid-washed glass beads (150–312 

600 μm diameter). Cells were homogenized using a TissueLyser for 4 minutes at 313 

30Hz/sec and further processed according to the kit protocol. For DNA extraction, cells 314 

from 1 ml of culture were pelleted by centrifugation at 16000 x g for 2 minutes and DNA 315 

extracted using GenElute™ Bacterial Genomic DNA Kit (cat# NA2110, Sigma-Aldrich). 316 

For mixed cultures, overnight cultures of individual strains were sub-cultured as described 317 

above and allowed to grow to an OD600 ~ 0.5-0.6 in TSB at 37°C with 200 rpm agitation. 318 

Equal numbers of cells from each strain were then inoculated into fresh 5 ml TSB at an 319 

OD600 ~0.1-0.2 and grown at 37°C with agitation at 200rpm for 2-3 hours until the OD600 320 

reached ~0.5. 321 

Mouse microbiome DNA was prepared as previously described (39). RNA was extracted 322 

from bacteria grown in association with a reconstructed human epidermis (RHE) skin 323 

organoid model (MatTek EpiDerm) with the Qiagen RNeasy kit (cat # 74104, Qiagen Inc.) 324 

and Escherichia coli RNA was purchased from ThermoFisher (#AM7940). 325 

Reconstructed human epidermis cell culture cultivation. 9mm primary normal human 326 

RHE tissue cultures were obtained from MatTek Corporation (EpiDerm, Gothenburg, 327 

Sweden). All batches were grown using cells from MatTek Corporation’s EpiDerm 328 

standard donor, a healthy male. The RHE were cultured according to the manufacturer’s 329 

directions. Briefly, upon arrival, the RHE cultures were placed in 6-well plates with 1mL of 330 
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warmed antibiotic-free EpiDerm Maintenance Media (MatTek Corporation,) or the 331 

equivalent EpiDerm Assay Media basally per well. The basal media was replaced daily, 332 

and the RHE cultures were kept at 37°C with 5% CO2.   333 

For each microbial isolate, a single colony was grown overnight in sterile 1X TSB. 108 334 

colony-forming units from each liquid culture were washed with ultrapure water (Fisher 335 

Scientific, #AAJ71786AP, Hampton, NH) and resuspended to a final concentration of 107 336 

colony-forming units in 120 µL. 337 

The RHE cultures were then dosed with 120uL of microbial isolate or vehicle (ultrapure 338 

water alone). Dosed RHE cultures were incubated for 1 hour at 37°C, then inoculum was 339 

aspirated to restore the air liquid interface. RHE were incubated with remaining bacteria 340 

for 18 hours prior to harvest.  341 

At harvest, 200 µL of PBS (MatTek Corporation) was added to the apical surface of each 342 

RHE culture, pipette mixed, removed, and plated for CFU enumeration. 140 µL of RLT 343 

buffer + 1% beta-mercaptoethanol was added to each RHE culture for RNA preservation. 344 

The RLT buffer-tissue solution was frozen at -80°C until RNA extraction. S. epidermidis 345 

Tü3298-GFP colonized RHE were visualized under blue light.  346 

 347 

Target gene selection and probe design. Pangenome datasets for Sa and Se were 348 

assembled using Roary (40) based on the available complete genome sequences of each 349 

species: 51 complete Sa and 86 complete Se genomes downloaded from GenBank. CDS 350 

present in at least 50/86 Se and 30/51 Sa genomes were submitted for probe design. 351 

Candidate probe sets were designed using standard informatics workflows at Tecan 352 

Genomics for SPE probes and Molecular Loop for MIP probes. We selected probes for 353 
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inclusion in the custom pool by subsampling based on perfect BLAST matches to at least 354 

50 Se or 30 Sa genomes and exclusion of probes with alignments having fewer than five 355 

mismatches to the alternative species or to a database of 10 S. capitis and 15 S. hominis 356 

genomes. Additional filtering criteria removed probes at the extremes of melting 357 

temperature and sequence composition (requiring no runs of >6 of a single base) and 358 

established minimum probe spacing of at least 100 bases.  All probes targeting both 359 

genomes were synthesized and used in a single pool. Distributions of the number of 360 

probes per CDS is provided in Figure 2. Probe sequences are in Supplemental Table 2. 361 

Purified nucleic acids were split across several workflows as shown in Figure 1. 362 

Bulk RNA-seq library preparation and sequencing: The NEBNext Ultra II Directional 363 

Library Prep protocol (NEB #E7760S) was used with NEB’s bacterial rRNA depletion kit 364 

(NEB # E7850S) to make bulk RNA-seq libraries for whole transcriptome sequencing. 365 

100 ng RNA input was used and adaptors were diluted 25-fold before ligating to the cDNA. 366 

The same set of RNA samples was used in a hybrid workflow combining pre-amplification 367 

with the NEBNext Ultra II Library Prep. 10 ng of total RNA was subjected to rRNA 368 

depletion and then cDNA synthesis and amplification using the Single Primer Isothermal 369 

Amplification (SPIA) method with the Crescendo cDNA synthesis for qPCR kit (Tecan 370 

Genomics, Inc.). For these samples, RNA was not fragmented prior to cDNA synthesis. 371 

After SPIA amplification, cDNA was fragmented using components of the Allegro Targeted 372 

Genotyping V2 kit (Tecan Genomics, Inc.) before proceeding with end repair, adaptor 373 

ligation (25-fold diluted adaptors) and PCR-enrichment using the NEBNext Ultra II 374 

Directional Library Prep kit components. E. coli RNA was included as a positive control in 375 

both the workflows. Index PCR was performed using the NEBNext Multiplex Oligos for 376 
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Illumina (Dual Index Primers Set 1) (NEB #E7600S). The final library purification was 377 

carried out using 0.78x Ampure XP beads to remove the adaptor peak. Libraries were 378 

assessed on the TapeStation and Qubit dsDNA high sensitivity assay before normalizing 379 

to 4 nM. 380 

cDNA synthesis and SPIA amplification. First and second strand cDNA synthesis were 381 

performed using the Crescendo cDNA synthesis for qPCR protocol (Tecan Genomics, 382 

Inc.). cDNA samples were then divided, with one portion subjected to SPIA amplification 383 

per the Crescendo protocol. cDNA was purified with AMPure XP beads at 1.8x and eluted 384 

in 33 ul of 1x TE. The resulting cDNA samples were quantified using NanoDrop following 385 

the kit protocol and Qubit dsDNA high sensitivity assays. The samples that were amplified 386 

with SPIA yielded >1 ug of cDNA and the non-SPIA samples were 6-8 ng.  387 

Targeted RNA-seq library preparation and sequencing using single-primer 388 

extension probes. SPIA-amplified cDNA samples were diluted 20-fold and 10-20 ng of 389 

cDNA was used as input for the Allegro Targeted Genotyping V2 protocol (Tecan 390 

Genomics, Inc.) with the custom probe pool. Non-amplified cDNA was not diluted and ~1 391 

ng was used as input for the Allegro protocol. Genomic DNA was used at 10-50 ng input. 392 

Each sample was enzymatically fragmented, followed by ligation of barcoded adaptors. 393 

Barcoded samples were then purified, pooled, and placed in an overnight hybridization 394 

reaction mixture with the probe pool. The following day (>12h) the DNA polymerase 395 

enzyme was added to the reaction for extension at 72°C for 10 min. Post-enrichment 396 

purification was done with 0.8x AMPure XP beads. A qPCR step was used to determine 397 

the number of cycles for library amplification (11 cycles). The final library pool was bead 398 

purified with 0.8x AMPure XP beads. A low template control (LTC) with 50 pg of S. 399 
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epidermidis RNA input and a mouse stool metagenome DNA sample were used as 400 

sensitivity and specificity controls respectively. The library pool was adjusted to 32 nM 401 

and 20 ul of the pool was used for sequencing (20 fmole/sample). The final sequencing 402 

pool also comprised libraries created using the NEBNext Ultra II Library prep protocol and 403 

Illumina DNA Prep (M) kit that were normalized to 4 nM and 0.2 nM respectively to 404 

represent 20 fmoles for the NEBNext samples and 1 fmole for the Illumina DNA Prep 405 

libraries. The exception was the E. coli RNA positive control (100 ng input) that was 406 

pooled at a lower amount to represent 5 fmoles in the sequencing pool. The library pool 407 

was loaded on NovaSeq 6000 SP flowcell 2x100bp run. The custom read 1 (R1) primer 408 

provided in the Allegro kit was spiked into the Illumina read 1 primer position at 0.3 uM 409 

and a phiX174 control library was spiked-in at 1% as recommended.  410 

Targeted RNA-seq library preparation and sequencing using molecular inversion 411 

probes. Targeted RNA libraries were prepared with the Low Input DNA Target Capture kit 412 

(Molecular Loop Biosciences, Inc.) using the cDNA generated with the Crescendo kit 413 

(Tecan Genomics, Inc.), including both the SPIA and non-SPIA pre-amplified samples, as 414 

well as the gDNA samples. The sample input was not normalized (50 pg – 50 ng) to 415 

evaluate its effect on probe hybridization efficiencies and consequently the number of 416 

sequencing reads generated from each of these samples. Among the 32 samples, only 417 

the human blood high molecular weight genomic DNA sample was pre-treated by heating 418 

it to 95°C for 5 min for denaturation. The protocol was followed using the kit user guide 419 

and the custom probe pool was hybridized for 18 hours (recommended ≥16 hours). After 420 

hybridization, each library was amplified by PCR for 20 cycles, pooled at equal volume 421 

(10 ul each), and the library pool was purified with 0.8x Agencourt RNAXP Clean beads 422 
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and eluted in 25ul of 1xTE. The library pool was quantified with the Qubit high sensitivity 423 

dsDNA assay and on the TapeStation D1000 high-sensitivity ScreenTape, which resulted 424 

in a single peak at ~415 bp. The library pool was loaded on a NovaSeq 6000 SP flowcell 425 

2x100bp run. The custom workflow was selected for the sequencing run using custom 426 

read1, read2 and sequencing primers provided by Molecular Loop. The phiX174 control 427 

library was spiked-in at 1%.  428 

Illumina DNA Prep Libraries: Libraries of Se and Sa gDNA were prepared using the 429 

Illumina DNA Prep, Tagmentation kit (Illumina, 20018705) and indexed using IDT for 430 

Illumina DNA/RNA UD Indexes (Illumina, 20042666). Reads were assembled using CLC 431 

Genomics Workbench and the resulting assembly was compared to the reference 432 

sequences for the Se and Sa genomes, confirming that the cultured cells represented the 433 

expected genomes. 434 

Genome sequence alignment. Reads were processed with trimmomatic 0.39 (41) to 435 

remove low-quality reads. For bulk RNA and SPE reads, the adapters were removed from 436 

the fastq reads using Cutadapt (42) version 4.4s, using the bait sequence 437 

'AGATCGGAAGAG'. For MIP reads, seqtk v1.4-r122 was used 438 

(https://github.com/lh3/seqtk) to remove the five bases from the 5′-end of the sequences 439 

as seqtk trimfq -b 5 <fastq>. Reads were aligned to reference genomes Sa m2872 440 

(GCF_017329165.1) and Se ATCC 14990 (GCF_006094375.1) as well as Sa USA300 441 

(GCF_002993865.1) Se Tu3298 (https://github.com/ohlab/S.epi-CRISPRi-and-RNA-442 

Seq) using BWA-MEM (43) version 0.7.17-r1188 as bwa mem -t 8 -k 19 -w 100. The 443 

mapped reads of each of the Se and Sa species were extracted with bamtools v2.5.2 (44) 444 

with parameter -isMapped ‘true’ and subsequently filtered with MAPQ >30 and edit 445 
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distance NM <4. High-quality sequences were sorted and converted into .bam and .bed 446 

files for downstream processing by SAMtools (45) v0.7.17-r1188. For bulk RNA-seq, the 447 

read count aligned to each CDS region was computed using featureCounts v1.6.4(46) 448 

(from Subread1.6.4) with -t CDS or -t rRNA, as appropriate, and summarized as counts 449 

per CDS per million reads per kilobase CDS length (RPKM). 450 

 451 

Probe sequence alignment. We also used BWA-MEM to align the SPE and MIP reads 452 

to a database of the probe sequences. For MIP, we used the seqinr R package (47) to 453 

extract the binding locations consisting of the first and the last 40bps of the probe 454 

sequences and generated new fasta files with the ‘first 40bps’ and ‘last 40bps’ probe data. 455 

We aligned the reads of each sample separately to the probe sequences of each species. 456 

The mapped reads were extracted as before with bamtools v2.5.2 and subsequently 457 

filtered with MAPQ >30 and NM <1 (perfect match) in SPE and MAPQ >30 and NM <3 in 458 

MIP. The high-quality sequences were sorted and converted into bam and bed files for 459 

downstream processing by SAMtools v0.7.17-r1188. The raw counts were generated with 460 

bedtools coverage for each sample from the probe sequences (.bed) and cleaned read 461 

(.bam) files by bedtools v2.31.0 (48). The raw counts were CPM normalized as 462 

1𝑀𝑀 × 𝑟𝑟𝑖𝑖
𝑗𝑗,𝑠𝑠 𝑅𝑅𝑗𝑗,𝑠𝑠⁄ , where 𝑟𝑟𝑖𝑖

𝑗𝑗,𝑠𝑠 denotes the number of reads mapped to location i in sample j 463 

and species s,𝑠𝑠 ∈ {𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆} and 𝑅𝑅𝑗𝑗,𝑠𝑠 is the total number of mapped reads in sample j and 464 

species s. Probe count tables are provided as Supplemental Tables 6-10. 465 

 466 

Differential Expression Analysis and Correlation Analyses 467 
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Differential expression analysis across stress conditions was performed in Rv4.4.1 (49) 468 

using DESeq2 (50) using a two factor design matrix accounting for stress treatment (TSB, 469 

acid, or urea) and SPIA status including interaction terms. In all comparisons, differentially 470 

expressed genes were defined as those with fold-change magnitude > 4 and adjusted p-471 

value < 0.01. Correlation matrices were calculated in R as Euclidean distances using the 472 

stats package (49) and pairwise correlations were assessed via Pearson correlation 473 

coefficients (R values) of best fit linear models to two-dimensional data using ggpubr (51). 474 

 475 

Data availability 476 

All data used in these analyses are available at the NCBI Gene Expression Omnibus 477 

under accession GSE279187. 478 

 479 

Acknowledgements 480 

We thank the Genome Technologies Scientific Service for performing sequence data 481 

collection and Mitch Kostich for helpful discussions regarding data analysis. 482 

 483 

Author Contributions 484 

GD and MA performed data analysis and wrote the manuscript. SC wrote the manuscript. 485 

PS performed the targeted sequencing experiments. IB and EM contributed to data 486 

analysis. EA performed the RHE experiments. JO and MA conceived the study. 487 

 488 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 28 

1.  Huang J, Jiang Z, Wang Y, Fan X, Cai J, Yao X, Liu L, Huang J, He J, Xie C, Wu Q, Cao Y, 489 

Leung EL. 2020. Modulation of gut microbiota to overcome resistance to immune 490 

checkpoint blockade in cancer immunotherapy. Curr Opin Pharmacol, 2020/07/04 ed. 491 

54:1–10. 492 

2.  van den Berg FF, van Dalen D, Hyoju SK, van Santvoort HC, Besselink MG, Wiersinga 493 

WJ, Zaborina O, Boermeester MA, Alverdy J. 2021. Western-type diet influences 494 

mortality from necrotising pancreatitis and demonstrates a central role for butyrate. 495 

Gut, 20200901st ed. 70:915–927. 496 

3.  Czaran T, Hoekstra RF. 2009. Microbial communication, cooperation and cheating: 497 

quorum sensing drives the evolution of cooperation in bacteria. PLoS One, 2009/08/18 498 

ed. 4:e6655. 499 

4.  Brenner K, Karig DK, Weiss R, Arnold FH. 2007. Engineered bidirectional 500 

communication mediates a consensus in a microbial biofilm consortium. Proc Natl 501 

Acad Sci U A, 2007/10/26 ed. 104:17300–4. 502 

5.  Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson 503 

KS, Knight R, Caporaso JG, Segata N, Huttenhower C. 2018. Species-level functional 504 

profiling of metagenomes and metatranscriptomes. Nat Methods, 2018/11/01 ed. 505 

15:962–968. 506 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 29 

6.  Peters BA, Wilson M, Moran U, Pavlick A, Izsak A, Wechter T, Weber JS, Osman I, Ahn J. 507 

2019. Relating the gut metagenome and metatranscriptome to immunotherapy 508 

responses in melanoma patients. Genome Med, 2019/10/11 ed. 11:61. 509 

7.  Korry BJ, Cabral DJ, Belenky P. 2020. Metatranscriptomics Reveals Antibiotic-Induced 510 

Resistance Gene Expression in the Murine Gut Microbiota. Front Microbiol 11:322. 511 

8.  Kang D, Shi B, Erfe MC, Craft N, Li H. 2015. Vitamin B12 modulates the transcriptome 512 

of the skin microbiota in acne pathogenesis. Sci Transl Med 7:293ra103. 513 

9.  Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T, Ivey KL, Drew DA, DuLong C, 514 

Rimm E, Izard J, Chan AT, Huttenhower C. 2018. Metatranscriptome of human faecal 515 

microbial communities in a cohort of adult men. Nat Microbiol, 20180115th ed. 516 

3:356–366. 517 

10.  Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Kusel K, Rillig MC, 518 

Rivett DW, Salles JF, van der Heijden MG, Youssef NH, Zhang X, Wei Z, Hol WH. 2017. 519 

Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J, 520 

2017/01/11 ed. 11:853–862. 521 

11.  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, 522 

Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, 523 

Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, 524 

Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims 525 

S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, 526 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 30 

Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M, 527 

Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, 528 

Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-529 

Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, 530 

Merieux A, Melo Minardi R, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno 531 

M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, 532 

Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. 2011. Enterotypes of the 533 

human gut microbiome. Nature, 2011/04/22 ed. 473:174–80. 534 

12.  Claussen JC, Skieceviciene J, Wang J, Rausch P, Karlsen TH, Lieb W, Baines JF, Franke 535 

A, Hutt MT. 2017. Boolean analysis reveals systematic interactions among low-536 

abundance species in the human gut microbiome. PLoS Comput Biol, 2017/06/24 ed. 537 

13:e1005361. 538 

13.  Human Microbiome Project C. 2012. Structure, function and diversity of the healthy 539 

human microbiome. Nature, 2012/06/16 ed. 486:207–14. 540 

14.  Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. 2010. 541 

Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation 542 

and nasal colonization. Nature, 2010/05/21 ed. 465:346–9. 543 

15.  Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, 544 

Wei M, Lovins V, Bugayev J, Horwinski J, Bradley C, Meyer J, Crumrine D, Sutter CH, 545 

Elias P, Mauldin E, Sutter TR, Grice EA. 2021. Commensal microbiota regulates skin 546 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 31 

barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell 547 

Host Microbe, 20210701st ed. 29:1235-1248 e8. 548 

16.  Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, Program NCS, Belkaid 549 

Y, Segre JA, Kong HH. 2017. Staphylococcus aureus and Staphylococcus epidermidis 550 

strain diversity underlying pediatric atopic dermatitis. Sci Transl Med, 2017/07/07 ed. 551 

9. 552 

17.  Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J. 2020. Host-553 

Specific Evolutionary and Transmission Dynamics Shape the Functional 554 

Diversification of Staphylococcus epidermidis in Human Skin. Cell 180:454-470.e18. 555 

18.  Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN. 2002. Global analysis of 556 

mRNA decay and abundance in Escherichia coli at single-gene resolution using two-557 

color fluorescent DNA microarrays. Proc Natl Acad Sci U A, 2002/07/18 ed. 99:9697–558 

702. 559 

19.  Wu L, Liu X, Schadt CW, Zhou J. 2006. Microarray-based analysis of subnanogram 560 

quantities of microbial community DNAs by using whole-community genome 561 

amplification. Appl Env Microbiol, 2006/07/06 ed. 72:4931–41. 562 

20.  Gardner SN, Jaing CJ, McLoughlin KS, Slezak TR. 2010. A microbial detection array 563 

(MDA) for viral and bacterial detection. BMC Genomics, 2010/11/27 ed. 11:668. 564 

21.  Samorodnitsky E, Datta J, Jewell BM, Hagopian R, Miya J, Wing MR, Damodaran S, 565 

Lippus JM, Reeser JW, Bhatt D, Timmers CD, Roychowdhury S. 2015. Comparison of 566 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 32 

custom capture for targeted next-generation DNA sequencing. J Mol Diagn, 567 

2014/12/22 ed. 17:64–75. 568 

22.  Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, 569 

Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C. 2009. 570 

Solution hybrid selection with ultra-long oligonucleotides for massively parallel 571 

targeted sequencing. Nat Biotechnol, 2009/02/03 ed. 27:182–9. 572 

23.  Depledge DP, Palser AL, Watson SJ, Lai IY, Gray ER, Grant P, Kanda RK, Leproust E, 573 

Kellam P, Breuer J. 2011. Specific capture and whole-genome sequencing of viruses 574 

from clinical samples. PLoS One, 2011/11/30 ed. 6:e27805. 575 

24.  Nimmo C, Shaw LP, Doyle R, Williams R, Brien K, Burgess C, Breuer J, Balloux F, Pym 576 

AS. 2019. Whole genome sequencing Mycobacterium tuberculosis directly from 577 

sputum identifies more genetic diversity than sequencing from culture. BMC 578 

Genomics, 2019/05/22 ed. 20:389. 579 

25.  Benjamino J, Leopold B, Phillips D, Adams MD. 2021. Genome-Based Targeted 580 

Sequencing as a Reproducible Microbial Community Profiling Assay. mSphere 581 

6:10.1128/msphere.01325-20. 582 

26.  Oh J, Byrd AL, Park M, Kong HH, Segre JA. 2016. Temporal Stability of the Human Skin 583 

Microbiome. Cell 165:854–866. 584 

27.  Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244–253. 585 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 33 

28.  Agostinetto G, Bozzi D, Porro D, Casiraghi M, Labra M, Bruno A. 2021. SKIOME Project: 586 

a curated collection of skin microbiome datasets enriched with study-related 587 

metadata. bioRxiv https://doi.org/10.1101/2021.08.17.456635. 588 

29.  Hardenbol P, Banér J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-589 

Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW. 2003. Multiplexed genotyping 590 

with sequence-tagged molecular inversion probes. Nat Biotechnol 21:673–678. 591 

30.  Myrmel M, Oma V, Khatri M, Hansen HH, Stokstad M, Berg M, Blomström A-L. 2017. 592 

Single primer isothermal amplification (SPIA) combined with next generation 593 

sequencing provides complete bovine coronavirus genome coverage and higher 594 

sequence depth compared to sequence-independent single primer amplification 595 

(SISPA). PLOS ONE 12:e0187780. 596 

31.  Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona 597 

G, Harmelin A, Cohen N, Sirota-Madi A, Thaiss CA, Pevsner-Fischer M, Sorek R, Xavier 598 

R, Elinav E, Segal E. 2015. Growth dynamics of gut microbiota in health and disease 599 

inferred from single metagenomic samples. Science 349:1101–1106. 600 

32.  Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, Jaenicke T, 601 

Rodriguez-Martin M, Trullas C, Hupe M, Elias PM, Krutmann J. 2012. Urea Uptake 602 

Enhances Barrier Function and Antimicrobial Defense in Humans by Regulating 603 

Epidermal Gene Expression. J Invest Dermatol 132:1561–1572. 604 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 34 

33.  Zhou C, Bhinderwala F, Lehman MK, Thomas VC, Chaudhari SS, Yamada KJ, Foster 605 

KW, Powers R, Kielian T, Fey PD. 2019. Urease is an essential component of the acid 606 

response network of Staphylococcus aureus and is required for a persistent murine 607 

kidney infection. PLoS Pathog 15:e1007538. 608 

34.  Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves 609 

RA, Gallo M, Lewis IA, Geuking MB, McCoy KD. 2020. Microbiome-derived inosine 610 

modulates response to checkpoint inhibitor immunotherapy. Science, 2020/08/15 ed. 611 

369:1481–1489. 612 

35.  Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Le Gall S, 613 

Saulnier L, Hayashi DK, Meynier A, Vinoy S, Giannone RJ, Hettich RL, Gordon JI. 2019. 614 

Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by 615 

Fiber-Derived Glycans. Cell, 2019/09/21 ed. 179:59-73 e13. 616 

36.  Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. 2017. 617 

Metabolite exchange between microbiome members produces compounds that 618 

influence Drosophila behavior. Elife, 2017/01/10 ed. 6. 619 

37.  Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, Gjonbalaj M, Eaton V, 620 

Fontana E, Amoretti L, Wright R, Caballero S, Wang ZX, Jung HJ, Morjaria SM, Leiner 621 

IM, Qin W, Ramos R, Cross JR, Narushima S, Honda K, Peled JU, Hendrickson RC, Taur 622 

Y, van den Brink MRM, Pamer EG. 2019. Microbiota-derived lantibiotic restores 623 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 35 

resistance against vancomycin-resistant Enterococcus. Nature, 2019/08/23 ed. 624 

572:665–669. 625 

38.  Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. 2022. 626 

Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify 627 

Genetic Factors Implicated in Lifestyle Versatility. mBio 0:e02632-22. 628 

39.  Long LL, Svenson KL, Mourino AJ, Michaud M, Fahey JR, Waterman L, Vandegrift KL, 629 

Adams MD. 2021. Shared and distinctive features of the gut microbiome of C57BL/6 630 

mice from different vendors and production sites, and in response to a new vivarium. 631 

Lab Anim 50:185–195. 632 

40.  Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, 633 

Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. 634 

Bioinforma Oxf Engl 31:3691–3693. 635 

41.  Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 636 

sequence data. Bioinformatics 30:2114–2120. 637 

42.  Martin M. 2011. Cutadapt removes adapter sequences from high-throughput 638 

sequencing reads. 1. EMBnet.journal 17:10–12. 639 

43.  Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with 640 

BWA-MEM. ArXiv 1303. 641 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462


 36 

44.  Barnett D, Garrison E, Quinlan A, Strömberg M, Marth G. 2011. BamTools: a C++ API 642 

and toolkit for analyzing and managing BAM files. Bioinformatics 27. 643 

45.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 644 

Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 645 

25:2078–2079. 646 

46.  Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program 647 

for assigning sequence reads to genomic features. Bioinforma Oxf Engl 30:923–930. 648 

47.  Gouy M, Milleret F, Mugnier C, Jacobzone M, Gautier C. 1984. ACNUC: a nucleic acid 649 

sequence data base and analysis system. Nucleic Acids Res 12:121–127. 650 

48.  Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic 651 

features. Bioinforma Oxf Engl 26:841–842. 652 

49.  R Core Team. 2024. R: A Language and Environment for Statistical Computing. R 653 

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 654 

50.  Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and 655 

dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. 656 

51.  Kassambara A. 2016. ggpubr: “ggplot2” Based Publication Ready Plots. 657 

 658 

 659 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2024. ; https://doi.org/10.1101/2024.11.26.625462doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625462

