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Abstract

Background: Investigators often interpret genome-wide data by analyzing the
expression levels of genes within pathways. While this within-pathway analysis is
routine, the products of any one pathway can affect the activity of other pathways. Past
efforts to identify relationships between biological processes have evaluated overlap in
knowledge bases or evaluated changes that occur after specific treatments. Individual
experiments can highlight condition-specific pathway-pathway relationships; however,
constructing a complete network of such relationships across many conditions requires
analyzing results from many studies.

Results: We developed PathCORE-T framework by implementing existing methods to
identify pathway-pathway transcriptional relationships evident across a broad data
compendium. PathCORE-T is applied to the output of feature construction algorithms;
it identifies pairs of pathways observed in features more than expected by chance as
functionally co-occurring. We demonstrate PathCORE-T by analyzing an existing eADAGE
model of a microbial compendium and building and analyzing NMF features from the
TCGA dataset of 33 cancer types. The PathCORE-T framework includes a demonstration
web interface, with source code, that users can launch to (1) visualize the network and
(2) review the expression levels of associated genes in the original data. PathCORE-T
creates and displays the network of globally co-occurring pathways based on features
observed in a machine learning analysis of gene expression data.

Conclusions: The PathCORE-T framework identifies transcriptionally co-occurring pathways
from the results of unsupervised analysis of gene expression data and visualizes
the relationships between pathways as a network. PathCORE-T recapitulated previously
described pathway-pathway relationships and suggested experimentally testable
additional hypotheses that remain to be explored.

Keywords: Gene expression, Unsupervised feature construction, Crosstalk, Pathway
interactions

Background
The number of publicly available genome-wide datasets is growing rapidly [1].

High-throughput sequencing technologies that measure gene expression quickly

with high accuracy and low cost continue to enable this growth [2]. Expanding

public data repositories [3, 4] have laid the foundation for computational methods
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that consider entire compendia of gene expression data to extract biological pat-

terns [5]. These patterns may be difficult to detect in measurements from a single

experiment. Unsupervised approaches, which identify important signals in the data

without being constrained to previously-described patterns, may discover new ex-

pression modules and thus will complement supervised methods, particularly for

exploratory analyses [6, 7].

Feature extraction methods are a class of unsupervised algorithms that can reveal un-

annotated biological processes from genomic data [7]. Each feature can be defined by a

subset of influential genes, and these genes suggest the biological or technical pattern

captured by the feature. These features, like pathways, are often considered individually

[7, 8]. When examined in the context of knowledgebases such as the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [9], most features are significantly

enriched for more than one biological gene set [7]. In this work, we refer to such a gene

set by the colloquial term, pathway. It follows then that such features can be described

by sets of functionally related pathways. We introduce the PathCORE-T (identifying

pathway co-occurrence relationships in transcriptomic data) software, which imple-

ments existing methods that jointly consider features and gene sets to map pathways

with shared transcriptional responses.

PathCORE-T offers a data-driven approach for identifying and visualizing transcrip-

tional pathway-pathway relationships. In this case, relationships are drawn based on the

sets of pathways, annotated in a resource of gene sets, occurring within constructed

features. Because PathCORE-T starts from a feature extraction model, the number of

samples in the compendium used for model generation and the fraction of samples

needed to observe a specific biological or technical pattern is expected to vary by fea-

ture extraction method. Pathways must be perturbed in a sufficient fraction of experi-

ments in the data compendium to be captured by any such method. To avoid

discovering relationships between pathways that share many genes—which could more

easily be discovered by directly comparing pathway membership—we implement an op-

tional pre-processing step that corrects for genes shared between gene sets, which

Donato et al. refer to as pathway crosstalk [10]. Donato et al.’s correction method, max-

imum impact estimation, has not previously been implemented in open source soft-

ware. We have released our implementation of maximum impact estimation as its own

Python package (PyPI package name: crosstalk-correction) so that it can be used inde-

pendently of PathCORE-T. Applying this correction in PathCORE-T software allows a

user to examine relationships between gene sets based on how genes are expressed as

opposed to which genes are shared.

We apply PathCORE-T to a microbial and a cancer expression dataset, each analyzed

using different feature extraction methods, to demonstrate its broad applicability. For

the microbial analysis, we created a network of KEGG pathways from recently de-

scribed ensemble Analysis using Denoising Autoencoders for Gene Expression

(eADAGE) models trained on a compendium of Pseudomonas aeruginosa (P. aeruginosa)

gene expression data (doi:https://doi.org/10.5281/zenodo.583694) [7]. We provide a live

demo of the PathCORE-T web application for this network: users can click on edges in

the network to review the expression levels of associated genes in the original compen-

dium (https://pathcore-demo.herokuapp.com/PAO1). To show its use outside of the mi-

crobial space, we also demonstrate PathCORE-T analysis of Pathway Interaction Database
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(PID)-annotated [11] non-negative matrix factorization (NMF) features [12, 13] extracted

from The Cancer Genome Atlas’s (TCGA) pan-cancer dataset of 33 different tumor types

(doi:https://doi.org/10.5281/zenodo.56735) [14].

In addition to visualizing the results of these two applications, the PathCORE-T web

interface (https://pathcore-demo.herokuapp.com/) links to the documentation and

source code for our implementation and example usage of PathCORE-T. Methods im-

plemented in PathCORE-T are written in Python and pip-installable (PyPI package

name: PathCORE-T). Examples of how to use these methods are provided in the

PathCORE-T analysis repository (https://github.com/greenelab/PathCORE-T-analysis).

In addition to scripts that reproduce the eADAGE and NMF analyses described in this

paper, the PathCORE-T-analysis repository includes a Jupyter notebook (https://goo.gl/

VuzN12) with step-by-step descriptions for the complete PathCORE-T framework.

Related work

Our approach diverges from other algorithms that we identified in the literature in its

intent: PathCORE-T finds pathway pairs within a biological system that are overrepre-

sented in features constructed from diverse transcriptomic data. This complements

other work that developed models specific to a single condition or disease. Approaches

designed to capture pathway-pathway interactions from gene expression experiments

for disease-specific, case-control studies have been published [15, 16]. For example,

Pham et al. developed Latent Pathway Identification Analysis to find pathways that

exert latent influences on transcriptionally altered genes [17]. Under this approach, the

transcriptional response profiles for a binary condition (disease/normal), in conjunction

with pathways specified in the KEGG and functions in Gene Ontology (GO) [18], are

used to construct a pathway-pathway network where key pathways are identified by

their network centrality scores [17]. Similarly, Pan et al. measured the betweenness cen-

trality of pathways in disease-specific genetic interaction and coexpression networks to

identify those most likely to be associated with bladder cancer risk [19]. These methods

captured pathway relationships associated with a particular disease state.

Global networks identify relationships between pathways that are not disease- or

condition-specific. One such network, detailed by Li et al., relied on publicly available

protein interaction data to determine pathway-pathway interactions [20]. Two pathways

were connected in the network if the number of protein interactions between the pair

was significant with respect to the computed background distribution. Such approaches

rely on databases of interactions, though the interactions identified can be subsequently

used for pathway-centric analyses of transcriptomic data [20, 21]. Pita-Juárez et al. cre-

ated the Pathway Coexpression Network (PCxN) as a tool to discover pathways corre-

lated with a pathway of interest [22]. They estimated correlations between pathways

based on the expression of their underlying genes (as annotated in MSigDB) across a

curated compendium of microarray data [22]. Software like PathCORE-T that generates

global networks of pathway relationships from unsupervised feature analysis models

built using transcriptomics data has not yet been published.

The intention of PathCORE-T is to work from transcriptomic data in ways that do

not give undue preference to combinations of pathways that share genes. Other

methods have sought to consider shared genes between gene sets, protein-protein
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interactions, or other curated knowledgebases to define pathway-pathway interactions

[20, 21, 23–25]. For example, Glass and Girvan described another network structure

that relates functional terms in GO based on shared gene annotations [26]. In contrast

with this approach, PathCORE-T specifically removes gene overlap in pathway defini-

tions before they are used to build a network. Our software reports pathway-pathway

connections overrepresented in gene expression patterns extracted from a large tran-

scriptomic compendium while controlling for the fact that some pathways share genes.

Implementation
PathCORE-T identifies functional links between known pathways from the output of

feature construction methods applied to gene expression data (Fig. 1a, b). The result is

a network of pathway co-occurrence relationships that represents the grouping of bio-

logical gene sets within those features. We correct for gene overlap in the pathway an-

notations to avoid identifying co-occurrence relationships driven by shared genes.

Additionally, PathCORE-T implements a permutation test for evaluating and removing

edges—pathway-pathway relationships—in the resulting network that cannot be distin-

guished from a null model of random associations. Though we refer to the relation-

ships in the network as co-occurrences, it is important to note that the final network

displays co-occurrences that have been filtered based on this permutation test (Fig. 1c).

Our software is written in Python and pip-installable (PyPI package name: PathCORE-T),

and examples of how to use the methods in PathCORE-T are provided in the

Fig. 1 The PathCORE-T software analysis workflow. a A user applies a feature construction algorithm to a
transcriptomic dataset of genes-by-samples. The features constructed must preserve the genes in the
dataset and assign weights to each of these genes according to some distribution. b Inputs required to run the
complete PathCORE-T analysis workflow. The constructed features are stored in a weight matrix. Based on how
gene weights are distributed in the constructed features, a user defines thresholds to select the set of genes
most indicative of each feature’s function—we refer to these user-defined thresholds as gene signature rules.
Finally, a list of pathway definitions will be used to interpret the features and build a pathway co-occurrence
network. c Methods in the PathCORE-T analysis workflow (indicated using purple font) can be employed
independently of each other so long as the necessary input(s) are provided. The 2 examples we describe to
demonstrate PathCORE-T software use the following inputs: (1) the weight matrix and gene signature rules for
eADAGE (applied to the P. aeruginosa gene compendium) and KEGG pathways and (2) the weight matrix and
gene signature rules for NMF (applied to the TCGA pan-cancer dataset) and PID pathways.
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PathCORE-T-analysis repository (https://github.com/greenelab/PathCORE-T-analysis).

We recommend that those interested in using the PathCORE-T software consult the docu-

mentation and scripts in PathCORE-T-analysis. Each of the functions in PathCORE-T that

we describe here can be used independently; however, we expect most users to employ the

complete approach for interpreting pathways shared in extracted features (Fig. 1).

Data organization

PathCORE-T requires the following inputs:

1) A weight matrix that connects each gene to each feature. We expect that this

results from the application of a feature construction algorithm to a compendium

of gene expression data. The primary requirements are that features must contain

the full set of genes in the compendium and genes must have been assigned weights

that quantify their contribution to a given feature. Accordingly, a weight matrix will

have the dimensions n x k, where n is the number of genes in the compendium and k

is the number of features constructed. In principal component analysis (PCA), this is

the loadings matrix [27]; in independent component analysis (ICA), it is the unmixing

matrix [28]; in ADAGE or eADAGE it is termed the weight matrix [5, 7]; in NMF it

is the matrix W, where the NMF approximation of the input dataset A is A ~ WH

[12]. In addition to the scripts we provide for the eADAGE and NMF examples in

the PathCORE-T analysis repository, we include a Jupyter notebook (https://goo.gl/

VuzN12) that demonstrates how a weight matrix can be constructed by applying ICA

to the P. aeruginosa gene compendium.

2) Gene signature rule(s). To construct a pathway co-occurrence network, the weight

matrix must be processed into gene signatures by applying threshold(s) to the gene

weights in each feature—we refer to these as gene signature rules. Subsequent

pathway overrepresentation will be determined by the set of genes that makes

up a feature’s gene signature. These are often the weights at the extremes of

the distribution. How gene weights are distributed will depend on the user’s

selected feature construction algorithm; because of this, a user must specify criterion

for including a gene in a gene signature. PathCORE-T permits rules for a single gene

signature or both a positive and a negative gene signature. The use of 2 signatures

may be appropriate when the feature construction algorithm produces positive and

negative weights, the extremes of which both characterize a feature (e.g. PCA, ICA,

ADAGE or eADAGE). Because a feature can have more than one gene signature, we

maintain a distinction between a feature and a feature’s gene signature(s).

3) A list of pathway definitions, where each pathway is defined by a set of genes

(e.g. KEGG pathways, PID pathways, GO biological processes). We provide the

files for the P. aeruginosa KEGG pathway definitions and the Nature-NCI PID

pathway definitions in the PathCORE-T analysis repository (https://github.com/

greenelab/PathCORE-T-analysis/tree/master/data).
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Weight matrix construction and signature definition

In practice, users can obtain a weight matrix from many different methods. For the

purposes of this paper, we demonstrate generality by constructing weight matrices via

eADAGE and NMF.

eADAGE

eADAGE is an unsupervised feature construction algorithm developed by Tan et al. [7]

that uses an ensemble of neural networks (an ensemble of ADAGE models) to capture

biological patterns embedded in the expression compendium. We use models from Tan

et al. [7]. In that work, Tan et al. evaluated multiple eADAGE model sizes to identify

that k = 300 features was an appropriate size for the current P. aeruginosa compen-

dium. The authors also compared eADAGE to two other commonly used feature con-

struction approaches, PCA and ICA [7]. Tan et al. produced 10 eADAGE models that

each extracted k = 300 features from the compendium of genome-scale P. aeruginosa

data. Because PathCORE-T supports the aggregation of co-occurrence networks created

from different models on the same input data, we use all 10 of these models in the

PathCORE-T analysis of eADAGE models (doi:https://doi.org/10.5281/zenodo.583172).

Tan et al. refers to the features constructed by eADAGE as nodes. They are repre-

sented as a weight matrix of size n x k, where n genes in the compendium are assigned

positive or negative gene weights, according to a standard normal distribution, for each

of the k features. Tan et al. determined that the gene sets contributing the highest posi-

tive or highest negative weights (+/− 2.5 standard deviations) to a feature described

gene expression patterns across the compendium, and thus referred to the gene sets as

signatures. Because a feature’s positive and negative gene signatures did not necessarily

correspond to the same biological processes or functions, Tan et al. analyzed each of

these sets separately [7]. Tan et al.’s gene signature rules are specified as an input to the

PathCORE-T analysis as well.

NMF

We also constructed an NMF model for the TCGA pan-cancer dataset. Given an NMF

approximation of A ~ WH [12], where A is the input expression dataset of size n x s (n

genes by s samples), NMF aims to find the optimal reconstruction of A by WH such

that W clusters on samples (size n x k) and H clusters on genes (size k x s). In order to

match the number of features constructed in each eADAGE model by Tan et al., we set

k, the desired number of features, to be 300 and used W as the input weight matrix for

the PathCORE-T software. We found that the gene weight distribution of an NMF feature

is right-skewed and (as the name suggests) non-negative (Additional file 1 Figure S1). In

this case, we defined a single gene signature rule: an NMF feature’s gene signature is the

set of genes with weights 2.0 standard deviations above the mean weight of the feature.

The selection of k = 300 for the NMF model allowed us to make the eADAGE-based

and NMF-based case studies roughly parallel. We verified that 300 components was ap-

propriate by evaluating the percentage of variance explained by PCA applied to the

TCGA dataset. In general, the principal components explained very little variance—the

first principal component only explained 11% of the variance. At 300 components, the

proportion of variance explained was 81%.
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As an additional analysis, we determined the number of components (k = 24) where

each additional component explained less than 0.5% of the variance. We found that

using a very small number of constructed features resulted in a substantial loss of

power: PathCORE-T analysis with a single k = 24 model yielded no significant edges

after permutation test. However, PathCORE-T can be applied over multiple models as

long as the feature construction method produces different solutions depending on

random seed initialization. We performed 10 factorizations to generate an aggregate of

10 k = 24-feature NMF models and found that the resulting co-occurrence network

was denser (364 edges) than our k = 300 factor network (119 edges). 65 edges were

found in both networks. These shared edges had higher weights, on average, in both

networks compared to edges unique to each network (https://goo.gl/vnDVNA).

Construction of a pathway co-occurrence network

We employ a Fisher’s exact test [29] to determine the pathways significantly associated

with each gene signature. When considering significance of a particular pathway, the

two categories of gene classification are as follows: (1) presence or absence of the gene

in the gene signature and (2) presence or absence of the gene in the pathway definition.

For each pathway in the input list of pathway definitions, we specify a contingency

table and calculate its p-value, which is corrected using the Benjamini—Hochberg [30]

procedure to produce a feature-wise false discovery rate (FDR). A pathway with an ad-

justed p-value that is less than the user-settable FDR significance cutoff, alpha (default:

0.05), is considered significantly enriched in a given gene signature. This cutoff value

should be selected to most aid user interpretation of the model. The next step of

PathCORE-T is to convert pathway-node relationships into pathway-pathway relation-

ships. For this, we apply a subsequent permutation test over pathway-pathway edge

weights that accounts for the frequency at which pathways are observed as associated

with features. This permutation produces a p-value for each edge. Two pathways

co-occur, or share an edge in the pathway co-occurrence network, if they are both over-

represented in a gene signature. The weight of each edge in the pathway-pathway graph

corresponds to number of times such a pathway pair is present over all gene signatures

in a model (Fig. 2a).

Permutation test

The network that results from the preceding method is densely connected, and many

edges may be spurious. To remove correlations that cannot be distinguished from ran-

dom pathway associations, we define a statistical test that determines whether a

pathway-pathway relationship appearing x times in a k-feature model is unexpected

under the null hypothesis—the null hypothesis being that the relationship does not ap-

pear more often than it would in a random network. We create N weighted null net-

works, where each null network is constructed by permuting overrepresented pathways

across the model’s gene signatures while preserving the number of pathways for which

each gene signature is enriched (Fig. 2b). N is a user-settable parameter: the example

PathCORE-T analyses we provide specify an N of 10,000. Increasing the value of N

leads to more precise p-values, particularly for low p-values, but comes at the expense

of additional computation time.
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In the case where we have positive and negative gene signatures, overrepresentation

can be positive or negative. Because certain pathways may display bias toward one

side—for example, a pathway may be overrepresented more often in features’ positive

gene signatures—we perform the permutation separately for each side. The N random

networks produce the background weight distribution for every observed edge; signifi-

cance can then be assessed by comparing the true (observed) edge weight against

the null. The p-value for each edge e is calculated by summing the number of

times a random network contained e at a weight greater than or equal to its ob-

served edge weight and dividing this value by N. Following Benjamini—Hochberg

FDR correction by the number of edges in the observed network,

pathway-pathway relationships with adjusted p-values above alpha (user-settable

default: 0.05) are removed from the network of co-occurring pathways (Fig. 2c).

The threshold alpha value is a configurable parameter, and the user should select

an FDR that best balances the costs and consequences of false positives. For

highly exploratory analyses in which it may be helpful to have more speculative

edges, this value can be raised. For analyses that require particularly stringent

control, it can be lowered.

Fig. 2 The approach implemented in PathCORE-T to construct a pathway co-occurrence network from an
expression compendium. a A user-selected feature extraction method is applied to expression data. Such
methods assign each gene a weight, according to some distribution, that represents the gene’s contribution to
the feature. The set of genes that are considered highly representative of a feature’s function is referred to as a
feature’s gene signature. The gene signature is user-defined and should be based on the weight distribution
produced by the unsupervised method of choice. In the event that the weight distribution contains both
positive and negative values, a user can specify criteria for both a positive and negative gene signature. A test
of pathway enrichment is applied to identify corresponding sets of pathways from the gene signature(s) in a
feature. We consider pathways significantly overrepresented in the same feature to co-occur. Pairwise
co-occurrence relationships are used to build a network, where each edge is weighted by the number of
features containing both pathways. b N permuted networks are generated to assess the statistical significance
of a co-occurrence relation in the graph. Here, we show the construction of one such permuted network. Two
invariants are maintained during a permutation: (1) pathway side-specificity (if applicable, e.g. positive and
negative gene signatures) and (2) the number of distinct pathways in a feature’s gene signature. c For each
edge observed in the co-occurrence network, we compare its weight against the weight distribution generated
from N (default: 10,000) permutations of the network to determine each edge’s p-value. After correcting the
p-value by the number of edges observed in the graph using the Benjamini—Hochberg procedure,
only an edge with an adjusted p-value below alpha (default: 0.05) is kept in the final co-occurrence network.
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Because the expected weight of every edge can be determined from the N ran-

dom networks (by taking the sum of the background weight distribution for an

edge and dividing it by N), we can divide each observed edge weight by its ex-

pected weight (dividing by 1 if the expected edge weight is 0 based on the N per-

mutations) to get the edge’s odds ratio. Edges in the final network are weighted by

their odds ratios.

Gene overlap correction

Pathways can co-occur because of shared genes (Fig. 3a, b, d). Though some ap-

proaches use the overlap of genes to identify connected pathways, we sought to capture

pairs of pathways that persisted even when this overlap was removed. The phenomenon

of observing enrichment of multiple pathways due to gene overlap has been previously

termed as “crosstalk,” and Donato et al. have developed a method to correct for it [10].

Due to confusion around the term, we refer to this as overlapping genes in this work,

except where specifically referencing Donato et al. Their approach, called maximum

impact estimation, begins with a membership matrix indicating the original assignment

of multiple genes to multiple pathways. It uses expectation maximization to estimate

the pathway in which a gene contributes its greatest predicted impact (its maximum

impact) and assigns the gene only to this pathway [10]. This provides a set of new path-

way definitions that no longer share genes (Fig. 3c, e).

There was no existing open source implementation of this algorithm, so we im-

plemented Donato et al.’s maximum impact estimation as a Python package (PyPI

package name: crosstalk-correction). This software is separate from PathCORE-T

because we expect that it may be useful in its own right for other analytical

Fig. 3 Correcting for gene overlap results in a sparser pathway co-occurrence network. a The KEGG pathway
annotations for the sulfonate transport system are a subset of those for sulfur metabolism. 12 genes annotated
to the sulfonate transport system are also annotated to sulfur metabolism. b Without applying the overlap
correction procedure, 25 of the genes in the positive and negative gene signatures of the eADAGE feature
“Node 11” are annotated to sulfur metabolism—of those, 8 genes are annotated to the sulfonate transport system
as well. c All 8 of the overlapping genes are mapped to the sulfur metabolism pathway after overlap correction.
d A co-occurrence network built without applying the overlap correction procedure will report co-occurrence
between the sulfonate transport system and sulfur metabolism, whereas (e) no such relation is identified after
overlap correction.
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workflows, such as differential expression analysis. The procedure is written using

NumPy functions and data structures, which allows for efficient implementation of

array and matrix operations in Python [31].

In PathCORE-T, we used this software to resolve overlapping genes before pathway

overrepresentation analysis. Overlap correction is applied to each feature of the model

independently. This most closely matches the setting evaluated by the original authors

of the method. Work on methods that resolves overlap by using information shared

across features may provide opportunities for future enhancements but was deemed to

be out of the scope of a software contribution.

With this step, the pathway co-occurrence network identifies relationships that are

not driven simply by the same genes being annotated to multiple pathways. Without

this correction step, it is difficult to determine whether a co-occurrence relationship

can be attributed to the features extracted from expression data or gene overlap in the

two pathway annotations. We incorporate this correction into the PathCORE-T workflow

by default; however, users interested in using PathCORE-T to find connections between

overlapping gene sets can choose to disable the correction step.

PathCORE-T network visualization and support for experimental follow-up

The PathCORE-T analysis workflow outputs a list of pathway-pathway relationships, or

edges in a network visualization, as a text file. An example of the KEGG P. aeruginosa

edges file is available for download on the demo application: http://pathcore-demo.her

okuapp.com/quickview. While we chose to represent pathway-pathway relationships as

a network, users can use this file output to visualize the identified relationships as an

adjacency matrix or in any other format they choose.

As an optional step, users can set up a Flask application for each PathCORE-T

network. Metadata gathered from the analysis are saved to TSV files, and we use

a script to populate collections in a MongoDB database with this information.

The co-occurrence network is rendered using the D3.js force-directed graph lay-

out [32]. Users can select a pathway-pathway relationship in the network to view

a new page containing details about the genes annotated to one or both path-

ways (Fig. 4a).

We created a web interface for deeper examination of relationships present in

the pathway co-occurrence network. The details we included in an edge-specific

page (1) highlight up to twenty genes—annotated to either of the two pathways in

the edge—contained in features that also contain this edge, after controlling for

the total number of features that contain each gene, and (2) display the expression

levels of these genes in each of the fifteen samples where they were most and least

expressed. The quantity of information (twenty genes, thirty samples total) we

choose to include in an edge page is intentionally limited so that users can review

it in a reasonable amount of time.

To implement the functionality in (1), we computed an odds ratio for every gene an-

notated to one or both pathways in the edge. The odds ratio measures how often we

observe a feature enriched for both the given gene and the edge of interest relative to

how often we would expect to see this occurrence. We calculate the proportion of
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observed cases and divide by the expected proportion–equivalent to the frequency of

the edge appearing in the model’s features.

Let k be the number of features from which the PathCORE-T network was

built. kG is the number of features that contain gene G (i.e. G is in kG features’

gene signatures), kE the number of features that contain edge E (i.e. the two

pathways connected by E are overrepresented in kE features), and kG & E the

number of features that contain both gene G and edge E. The odds ratio is com-

puted as follows:

observed ¼ kG&E
kG

expected ¼ kE
k

odds ratio ¼ observed
expected

Fig. 4 A web application used to analyze pathway-pathway relationships in the eADAGE-based, P. aeruginosa
KEGG network. a A user clicks on an edge (a pathway-pathway relationship) in the network visualization. b The
user is directed to a page that displays expression data from the original transcriptomic dataset specific to the
selected edge (https://goo.gl/Hs5A3e). The expression data is visualized as two heatmaps that indicate the
fifteen most and fifteen least expressed samples corresponding to the edge. To select the “most” and “least”
expressed samples, we assign each sample a summary “expression score.” The expression score is based on the
expression values of the genes (limited to the top twenty genes with an odds ratio above 1) annotated to one
or both of the pathways. Here, we show the heatmap of least expressed samples specific to the [Phosphate
transport - Type II general secretion] relationship. c Clicking on a square in the heatmap directs a user to an
experiment page (https://goo.gl/KYNhwB) based on the sample corresponding to that square. A user can use
the experiment page to identify whether the expression values of genes specific to an edge and a selected
sample differ from those recorded in other samples of the experiment. In this experiment page, the first three
samples (labeled in black) are P. aeruginosa “baseline” replicates grown for 72 h in drop-flow biofilm reactors.
The following three samples (labeled in blue) are P. aeruginosa grown for an additional 12 h (84 h total). Labels
in blue indicate that the three 84 h replicates are in the heatmap of least expressed samples displayed on the
[Phosphate transport – Type II general secretion] edge page.
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An odds ratio above 1 suggests that the gene is more likely to appear in features

enriched for this pair of pathways. In the web interface, we sort the genes by their odds

ratio to highlight genes most observed with the co-occurrence relationship.

The information specified in (2) requires an “expression score” for every sample. A

sample expression score is calculated using the genes we selected in goal (1): it is the

average of the normalized gene expression values weighted by the normalized gene

odds ratio. Selection of the most and least expressed samples is based on these scores.

We use two heatmaps to show the (maximum of twenty) genes’ expression values in

each of the fifteen most and least expressed samples (Fig. 4b).

For each sample in an edge page, a user can examine how the expression values of the

edge’s twenty genes in that sample compare to those recorded for all other samples in the

dataset that are from the same experiment (Fig. 4c). Genes that display distinct expression

patterns under a specific setting may be good candidates for follow-up studies.

Results
PathCORE-T software

Unsupervised methods can identify previously undiscovered patterns in large collec-

tions of data. PathCORE-T overlays curated knowledge after feature construction to

help researchers interpret constructed features in the context of existing knowledge-

bases. Specifically, PathCORE-T aims to clarify how expert-annotated gene sets work

together from a gene expression perspective. PathCORE-T starts from an unsupervised

feature construction model. Before applying the software, users should evaluate models

to make sure that they capture biological features in their dataset. Model evaluation

can be performed in numerous ways depending on the setting and potential assess-

ments include consistency across biological replicates, reconstruction error given a

fixed dimensionality, and independent validation experiments. Tan et al. described sev-

eral ways that models could be evaluated [7]. Datasets will vary in terms of their amen-

ability to analysis by different model-building strategies, and researchers may wish to

consult a recent review for more discussion of feature construction methods [33].

We implemented the methods contained in the PathCORE-T software in Python. The

implementations of the primary steps are pip-installable (PyPI package name:

PathCORE-T), and examples of how to use the methods in PathCORE-T are provided in

the PathCORE-T-analysis repository (https://github.com/greenelab/PathCORE-T-analysis).

We also implemented an optional step, which corrects for overlapping genes be-

tween pathway definitions, described by Donato et al. [10]. Though the algorithm

had been described, no publicly available implementation existed. We provide this

overlap correction algorithm as a Python package (PyPI package name: crosstalk-correction)

available under the BSD 3-clause license. Each component of PathCORE-T can be

used independently of each other (Fig. 1c).

Here, we present analyses that can be produced by applying the full PathCORE-T

pipeline to models created from a transcriptomic compendium by an unsupervised fea-

ture construction algorithm. Input pathway definitions are “overlap-corrected” for each

feature before enrichment analysis. An overlap-corrected, weighted pathway co-occur-

rence network is built by connecting the pairs of pathways that are overrepresented in
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features of the model. Finally, we remove edges that cannot be distinguished from a

null model of random associations based on the results of a permutation test.

Case study: P. aeruginosa eADAGE models annotated with KEGG pathways

We used PathCORE-T to create a network of co-occurring pathways out of the

expression signatures extracted by eADAGE from a P. aeruginosa compendium

[7]. For every feature, overlap correction was applied to the P. aeruginosa KEGG

pathway annotations and overlap-corrected annotations were used in the overrep-

resentation analysis. PathCORE-T aggregates multiple networks by taking the

union of the edges across all networks and summing the weights of common

pathway-pathway connections. We do this to emphasize the co-occurrence rela-

tionships that are more stable [34]—that is, the relationships that appear across

multiple models. Finally, we removed edges in the aggregate network that were

not significant after FDR correction when compared to the background distribu-

tions generated from 10,000 permutations of the network. Used in this way,

PathCORE-T software allowed for exploratory analysis of an existing well-vali-

dated model.

The eADAGE co-occurrence network that resulted from our exploratory analysis

contained a number of pathway-pathway relationships that have been previously

Fig. 5 eADAGE features constructed from publicly available P. aeruginosa expression data describe known
KEGG pathway-pathway relationships. a The glycerolipid metabolism, Entner-Doudoroff, glycolysis/
gluconeogenesis, and pentose phosphate, pathways share common functions related to glucose catabolism. b
Organophosphate and inorganic phosphate transport- and metabolism-related processes frequently
co-occur with bacterial secretion systems. Here, we observe pairwise relationships between type II
general secretion and phosphate-related processes. c Pathways involved in the catabolism of sulfur-containing
molecules—taurine (NitT/TauT family transport) and methionine (D-Methionine transport), and the general
sulfur metabolism process—are functionally linked. d The zinc transport, iron complex transport, and MacAB-
TolC transporter systems are pairwise connected. The fully labeled network can be viewed at https://
pathcore-demo.herokuapp.com/PAO1. The list of KEGG pathway-pathway relationships visualized in the network
is available at the specified link (Ctrl + L for list view) and as a Additional file 2 for this paper.
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characterized by other means (Fig. 5). Three glucose catabolism processes co-occur in

the network: glycolysis, pentose phosphate, and the Entner-Doudoroff pathway (Fig.

5a). We also found a cluster relating organophosphate and inorganic phosphate trans-

port- and metabolism-related processes (Fig. 5b). Notably, phosphate uptake and acqui-

sition genes were directly connected to the hxc genes that encode a type II secretion

system. Studies in P. aeruginosa clinical isolates demonstrated that the Hxc secretion

system was responsible for the secretion of alkaline phosphatases, which are phosphate

scavenging enzymes [35, 36] and the phosphate binding DING protein [37]. Further-

more, alkaline phosphatases, DING and the hxc genes are regulated by the transcrip-

tion factor PhoB which is most active in response to phosphate limitation. The

identification of this relationship by PathCORE-T as a global pattern suggested the role

of type II secretion and phosphate limitation seen in a limited number of isolates may

be generalizable to broader P. aeruginosa biology. As shown in Fig. 5c, we also identi-

fied linkages between two pathways involved in the catabolism of sulfur-containing

molecules, taurine and methionine, and the general sulfur metabolism process. Other

connections between pathways involved in the transport of iron (ferrienterobactin bind-

ing) [38] and zinc (the znu uptake system [39]) were identified (Fig. 5d). Interestingly,

genes identified in the edge between the zinc transport and MacAB-TolC pathways in-

cluded the pvd genes involved in pyoverdine biosynthesis and regulation, a putative

periplasmic metal binding protein, as well as other components of an ABC transporter

(genes PA2407, PA2408, and PA2409 at https://goo.gl/bfqOk8) [40]. PathCORE-T sug-

gested a relationship between zinc and iron pathways in P. aeruginosa transcriptional

data though such a relationship has not yet been described. Structural analysis of the

iron-responsive regulator Fur found that it also productively binds zinc in E. coli and

Bacillus subtilis providing a mechanism by which these pathways may be linked [41, 42].

The network constructed using the PathCORE-T framework had 203 edges between

89 pathways. For comparison, we constructed a KEGG pathway-pathway network

where edges were drawn between pathways with significant gene overlap (FDR-cor-

rected hypergeometric test < 0.05). The overlap-based network had 406 edges between

158 pathways. Only 35 of the edges in the PathCORE-T network were between path-

ways that shared genes, with an average Jaccard Index of only 0.035. The network con-

structed using PathCORE-T (with overlap-correction applied by default) captured

pathway co-occurrences not driven by shared genes between pathways.

Case study: TCGA’s pan-cancer compendium analyzed by NMF with PID pathways

PathCORE-T is not specific to a certain dataset, organism, or feature construction

method. We constructed a 300-feature NMF model of TCGA pan-cancer gene expres-

sion data, which is comprised of 33 different cancer-types from various organ sites and

applied the PathCORE-T software to those features. We chose NMF because it has

been used in previous studies to identify biologically relevant patterns in transcriptomic

data [12] and by many studies to derive molecular subtypes [43–45]. The 300 NMF fea-

tures were analyzed using overlap-corrected PID pathways, a collection of 196 human

cell signaling pathways with a particular focus on processes relevant to cancer [11].

PathCORE-T detected modules of co-occurring pathways that were consistent with our

current understanding of cancer-related interactions (Fig. 6). Because cancer-relevant
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pathways were used, it was not surprising that cancer-relevant pathways appeared. How-

ever, the edges between those pathways were also encouraging. For example, a module

composed of a FoxM1 transcription factor network, an E2F transcription factor network,

Aurora B kinase signaling, ATR signaling, PLK1 signaling, and members of the Fanconi

anemia DNA damage response pathway was densely connected (Fig. 6a). The connections

in this module recapitulated well known cancer hallmarks including cellular proliferation

pathways and markers of genome instability, such as the activation of DNA damage re-

sponse pathways [46]. We found that several pairwise pathway co-occurrences corre-

sponded with previously reported pathway-pathway interactions [47–49]. We also

observed a hub of pathways interacting with Wnt signaling, among them the regulation of

nuclear Beta-catenin signaling, FGF signaling, and BMP signaling (Fig. 6b). The Wnt and

BMP pathways are functionally integrated in biological processes that contribute to cancer

progression [50]. Additionally, Wnt/Beta-catenin signaling is a well-studied regulatory

system, and the effects of mutations in Wnt pathway components on this system have

been linked to tumorigenesis [51]. Wnt/Beta-catenin and FGF together influence the dir-

ectional migration of cancer cell clusters [52].

Fig. 6 PID pathway-pathway relationships discovered in NMF features constructed from the TCGA pan-cancer
gene expression dataset. a Pathways in this module are responsible for cell cycle progression. b Wnt
signaling interactions with nuclear Beta-catenin signaling, FGF signaling, and BMP signaling have all
been linked to cancer progression. c Here, we observe functional links between pathways responsible
for angiogenesis and those responsible for cell proliferation. d The VEGF-VEGFR pathway interacts with
the S1P3 pathway through Beta3 integrins. e This module contains many relationships related to immune
system processes. The interaction cycle formed by T-Cell Receptor (TCR) signaling in naïve CD4+ T
cells and IL-12/IL-4 mediated signaling events, outlined in yellow, is one well-known example. The
cycle in blue is formed by the ATF2, NFAT, and AP1 pathways; pairwise co-occurrence of these three
transcription factor networks may suggest that dysregulation of any one of these pathways can trigger
variable oncogenic processes in the immune system. The list of PID pathway-pathway relationships visualized in
the network is available as an Additional file 3 for this paper.
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Two modules in the network related to angiogenesis, or the formation of new blood

vessels (Fig. 6c, d). Tumors transmit signals that stimulate angiogenesis because a blood

supply provides the necessary oxygen and nutrients for their growth and proliferation.

One module relates angiogenesis factors to cell proliferation. This module connected

the following pathways: PDGFR-beta signaling, FAK-mediated signaling events,

VEGFR1 and VEGFR2-mediated signaling events, nuclear SMAD2/3 signaling regula-

tion, and RB1 regulation (Fig. 6c). These functional connections are known to be in-

volved in tumor proliferation [53–55]. The other module indicated a relationship by

which the VEGF pathway interacts with the S1P3 pathway through Beta3 integrins

(Fig. 6d). S1P3 is a known regulator of angiogenesis [56], and has been demonstrated to

be associated with treatment-resistant breast cancer and poor survival [57]. Moreover, this

interaction module has been observed to promote endothelial cell migration in human

umbilical veins [58]. Taken together, this independent module may suggest a distinct

angiogenesis process activated in more aggressive and metastatic tumors that is disrupted

and regulated by alternative mechanisms [59].

Finally, PathCORE-T revealed a large, densely connected module of immune related

pathways (Fig. 6e). We found that this module contains many co-occurrence relation-

ships that align with immune system processes. One such example is the well character-

ized interaction cycle formed by T-Cell Receptor (TCR) signaling in naïve CD4+ T cells

and IL-12/IL-4 mediated signaling events [60–62]. At the same time, PathCORE-T identi-

fies additional immune-related relationships. We observed a cycle between the three tran-

scription factor networks: ATF-2, AP-1, and CaN-regulated NFAT-dependent

transcription. These pathways can take on different, often opposing, functions depending

on the tissue and subcellular context. For example, ATF-2 can be an oncogene in one

context (e.g. melanoma) and a tumor suppressor in another (e.g. breast cancer) [63].

AP-1, comprised of Jun/Fos proteins, is associated with both tumorigenesis and tumor

suppression due to its roles in cell survival, proliferation, and cell death [64]. Moreover,

NFAT in complex with AP-1 regulates immune cell differentiation, but dysregulation of

NFAT signaling can lead to malignant growth and tumor metastasis [65]. The functional

association observed between the ATF-2, AP-1, and NFAT cycle together within the im-

munity module might suggest that dysregulation within this cycle has profound conse-

quences for immune cell processes and may trigger variable oncogenic processes.

Just as we did for the eADAGE-based P. aeruginosa KEGG pathways case study, we con-

structed a network only from PID pathways with significant gene overlap. The network con-

structed using PathCORE-T and NMF features had 119 edges between 57 pathways. The

overlap-based network was much denser: it had 3826 edges between 196 pathways. This

suggested a high degree of overlap between PID pathways. For the PathCORE-T NMF

co-occurrence network, 96 of the edges were between pathways that shared genes.

However, the average Jaccard Index for these pathway pairs remained low, at 0.058.

Conclusions
Unsupervised analyses of genome-scale datasets that summarize key patterns in the

data have the potential to improve our understanding of how a biological system oper-

ates via complex interactions between molecular processes. Feature construction algo-

rithms capture coordinated changes in the expression of many genes as features. The

genes that contribute most to each feature co-vary. However, interpreting the features
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generated by unsupervised approaches remains challenging. PathCORE-T creates a net-

work of globally co-occurring pathways based on features created from the analysis of a

compendium of gene expression data. Networks modeling the relationships between

curated processes in a biological system offer a means for developing new hypotheses

about which pathways influence each other and when. Our framework provides a

data-driven characterization of the biological system at the pathway-level by identifying

pairs of pathways that are overrepresented across many features.

PathCORE-T connects the features extracted from data to curated resources. It is import-

ant to note that PathCORE-T will only be able to identify pathways that occur in features of

the underlying model, which means these pathways must be transcriptionally perturbed in

at least some subset of the compendium. Models should be evaluated before analysis with

PathCORE-T. The network resulting from PathCORE-T can help to identify global

pathway-pathway relationships—a baseline network—that complements existing work to

identify interactions between pathways in the context of a specific disease. The specific

niche that PathCORE-T framework aims to fill is in revealing to researchers which gene sets

are most closely related to each other in machine learning-based models of gene expression,

which genes play a role in this co-occurrence, and which conditions drive this relationship.

Availability and requirements
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Other requirements: Python 3 or higher

License: BSD 3-clause
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